|
|
|
import os.path as osp |
|
import tempfile |
|
from functools import partial |
|
|
|
import numpy as np |
|
import pytest |
|
import torch |
|
from mmdet.core import BitmapMasks |
|
|
|
from mmocr.models.textrecog.recognizer import (EncodeDecodeRecognizer, |
|
SegRecognizer) |
|
|
|
|
|
def _create_dummy_dict_file(dict_file): |
|
chars = list('helowrd') |
|
with open(dict_file, 'w') as fw: |
|
for char in chars: |
|
fw.write(char + '\n') |
|
|
|
|
|
def test_base_recognizer(): |
|
tmp_dir = tempfile.TemporaryDirectory() |
|
|
|
dict_file = osp.join(tmp_dir.name, 'fake_chars.txt') |
|
_create_dummy_dict_file(dict_file) |
|
|
|
label_convertor = dict( |
|
type='CTCConvertor', dict_file=dict_file, with_unknown=False) |
|
|
|
preprocessor = None |
|
backbone = dict(type='VeryDeepVgg', leaky_relu=False) |
|
encoder = None |
|
decoder = dict(type='CRNNDecoder', in_channels=512, rnn_flag=True) |
|
loss = dict(type='CTCLoss') |
|
|
|
with pytest.raises(AssertionError): |
|
EncodeDecodeRecognizer(backbone=None) |
|
with pytest.raises(AssertionError): |
|
EncodeDecodeRecognizer(decoder=None) |
|
with pytest.raises(AssertionError): |
|
EncodeDecodeRecognizer(loss=None) |
|
with pytest.raises(AssertionError): |
|
EncodeDecodeRecognizer(label_convertor=None) |
|
|
|
recognizer = EncodeDecodeRecognizer( |
|
preprocessor=preprocessor, |
|
backbone=backbone, |
|
encoder=encoder, |
|
decoder=decoder, |
|
loss=loss, |
|
label_convertor=label_convertor) |
|
|
|
recognizer.init_weights() |
|
recognizer.train() |
|
|
|
imgs = torch.rand(1, 3, 32, 160) |
|
|
|
|
|
feat = recognizer.extract_feat(imgs) |
|
assert feat.shape == torch.Size([1, 512, 1, 41]) |
|
|
|
|
|
img_metas = [{ |
|
'text': 'hello', |
|
'resize_shape': (32, 120, 3), |
|
'valid_ratio': 1.0 |
|
}] |
|
losses = recognizer.forward_train(imgs, img_metas) |
|
assert isinstance(losses, dict) |
|
assert 'loss_ctc' in losses |
|
|
|
|
|
results = recognizer.simple_test(imgs, img_metas) |
|
assert isinstance(results, list) |
|
assert isinstance(results[0], dict) |
|
assert 'text' in results[0] |
|
assert 'score' in results[0] |
|
|
|
|
|
recognizer.forward = partial( |
|
recognizer.simple_test, |
|
img_metas=img_metas, |
|
return_loss=False, |
|
rescale=True) |
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
onnx_path = f'{tmpdirname}/tmp.onnx' |
|
torch.onnx.export( |
|
recognizer, (imgs, ), |
|
onnx_path, |
|
input_names=['input'], |
|
output_names=['output'], |
|
export_params=True, |
|
keep_initializers_as_inputs=False) |
|
|
|
|
|
aug_results = recognizer.aug_test([imgs, imgs], [img_metas, img_metas]) |
|
assert isinstance(aug_results, list) |
|
assert isinstance(aug_results[0], dict) |
|
assert 'text' in aug_results[0] |
|
assert 'score' in aug_results[0] |
|
|
|
tmp_dir.cleanup() |
|
|
|
|
|
def test_seg_recognizer(): |
|
tmp_dir = tempfile.TemporaryDirectory() |
|
|
|
dict_file = osp.join(tmp_dir.name, 'fake_chars.txt') |
|
_create_dummy_dict_file(dict_file) |
|
|
|
label_convertor = dict( |
|
type='SegConvertor', dict_file=dict_file, with_unknown=False) |
|
|
|
preprocessor = None |
|
backbone = dict( |
|
type='ResNet31OCR', |
|
layers=[1, 2, 5, 3], |
|
channels=[32, 64, 128, 256, 512, 512], |
|
out_indices=[0, 1, 2, 3], |
|
stage4_pool_cfg=dict(kernel_size=2, stride=2), |
|
last_stage_pool=True) |
|
neck = dict( |
|
type='FPNOCR', in_channels=[128, 256, 512, 512], out_channels=256) |
|
head = dict( |
|
type='SegHead', |
|
in_channels=256, |
|
upsample_param=dict(scale_factor=2.0, mode='nearest')) |
|
loss = dict(type='SegLoss', seg_downsample_ratio=1.0) |
|
|
|
with pytest.raises(AssertionError): |
|
SegRecognizer(backbone=None) |
|
with pytest.raises(AssertionError): |
|
SegRecognizer(neck=None) |
|
with pytest.raises(AssertionError): |
|
SegRecognizer(head=None) |
|
with pytest.raises(AssertionError): |
|
SegRecognizer(loss=None) |
|
with pytest.raises(AssertionError): |
|
SegRecognizer(label_convertor=None) |
|
|
|
recognizer = SegRecognizer( |
|
preprocessor=preprocessor, |
|
backbone=backbone, |
|
neck=neck, |
|
head=head, |
|
loss=loss, |
|
label_convertor=label_convertor) |
|
|
|
recognizer.init_weights() |
|
recognizer.train() |
|
|
|
imgs = torch.rand(1, 3, 64, 256) |
|
|
|
|
|
feats = recognizer.extract_feat(imgs) |
|
assert len(feats) == 4 |
|
|
|
assert feats[0].shape == torch.Size([1, 128, 32, 128]) |
|
assert feats[1].shape == torch.Size([1, 256, 16, 64]) |
|
assert feats[2].shape == torch.Size([1, 512, 8, 32]) |
|
assert feats[3].shape == torch.Size([1, 512, 4, 16]) |
|
|
|
attn_tgt = np.zeros((64, 256), dtype=np.float32) |
|
segm_tgt = np.zeros((64, 256), dtype=np.float32) |
|
mask = np.zeros((64, 256), dtype=np.float32) |
|
gt_kernels = BitmapMasks([attn_tgt, segm_tgt, mask], 64, 256) |
|
|
|
|
|
img_metas = [{ |
|
'text': 'hello', |
|
'resize_shape': (64, 256, 3), |
|
'valid_ratio': 1.0 |
|
}] |
|
losses = recognizer.forward_train(imgs, img_metas, gt_kernels=[gt_kernels]) |
|
assert isinstance(losses, dict) |
|
|
|
|
|
results = recognizer.simple_test(imgs, img_metas) |
|
assert isinstance(results, list) |
|
assert isinstance(results[0], dict) |
|
assert 'text' in results[0] |
|
assert 'score' in results[0] |
|
|
|
|
|
aug_results = recognizer.aug_test([imgs, imgs], [img_metas, img_metas]) |
|
assert isinstance(aug_results, list) |
|
assert isinstance(aug_results[0], dict) |
|
assert 'text' in aug_results[0] |
|
assert 'score' in aug_results[0] |
|
|
|
tmp_dir.cleanup() |
|
|