|
|
|
|
|
import argparse |
|
import ast |
|
import os |
|
import os.path as osp |
|
|
|
import mmcv |
|
import numpy as np |
|
import torch |
|
from mmcv import Config |
|
from mmcv.image import tensor2imgs |
|
from mmcv.parallel import MMDataParallel |
|
from mmcv.runner import load_checkpoint |
|
|
|
from mmocr.datasets import build_dataloader, build_dataset |
|
from mmocr.models import build_detector |
|
|
|
|
|
def save_results(model, img_meta, gt_bboxes, result, out_dir): |
|
assert 'filename' in img_meta, ('Please add "filename" ' |
|
'to "meta_keys" in config.') |
|
assert 'ori_texts' in img_meta, ('Please add "ori_texts" ' |
|
'to "meta_keys" in config.') |
|
|
|
out_json_file = osp.join(out_dir, |
|
osp.basename(img_meta['filename']) + '.json') |
|
|
|
idx_to_cls = {} |
|
if model.module.class_list is not None: |
|
for line in mmcv.list_from_file(model.module.class_list): |
|
class_idx, class_label = line.strip().split() |
|
idx_to_cls[int(class_idx)] = class_label |
|
|
|
json_result = [{ |
|
'text': |
|
text, |
|
'box': |
|
box, |
|
'pred': |
|
idx_to_cls.get( |
|
pred.argmax(-1).cpu().item(), |
|
pred.argmax(-1).cpu().item()), |
|
'conf': |
|
pred.max(-1)[0].cpu().item() |
|
} for text, box, pred in zip(img_meta['ori_texts'], gt_bboxes, |
|
result['nodes'])] |
|
|
|
mmcv.dump(json_result, out_json_file) |
|
|
|
|
|
def test(model, data_loader, show=False, out_dir=None): |
|
model.eval() |
|
results = [] |
|
dataset = data_loader.dataset |
|
prog_bar = mmcv.ProgressBar(len(dataset)) |
|
for i, data in enumerate(data_loader): |
|
with torch.no_grad(): |
|
result = model(return_loss=False, rescale=True, **data) |
|
|
|
batch_size = len(result) |
|
if show or out_dir: |
|
img_tensor = data['img'].data[0] |
|
img_metas = data['img_metas'].data[0] |
|
if np.prod(img_tensor.shape) == 0: |
|
imgs = [mmcv.imread(m['filename']) for m in img_metas] |
|
else: |
|
imgs = tensor2imgs(img_tensor, **img_metas[0]['img_norm_cfg']) |
|
assert len(imgs) == len(img_metas) |
|
gt_bboxes = [data['gt_bboxes'].data[0][0].numpy().tolist()] |
|
|
|
for i, (img, img_meta) in enumerate(zip(imgs, img_metas)): |
|
if 'img_shape' in img_meta: |
|
h, w, _ = img_meta['img_shape'] |
|
img_show = img[:h, :w, :] |
|
else: |
|
img_show = img |
|
|
|
if out_dir: |
|
out_file = osp.join(out_dir, |
|
osp.basename(img_meta['filename'])) |
|
else: |
|
out_file = None |
|
|
|
model.module.show_result( |
|
img_show, |
|
result[i], |
|
gt_bboxes[i], |
|
show=show, |
|
out_file=out_file) |
|
|
|
if out_dir: |
|
save_results(model, img_meta, gt_bboxes[i], result[i], |
|
out_dir) |
|
|
|
for _ in range(batch_size): |
|
prog_bar.update() |
|
return results |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser( |
|
description='MMOCR visualize for kie model.') |
|
parser.add_argument('config', help='Test config file path.') |
|
parser.add_argument('checkpoint', help='Checkpoint file.') |
|
parser.add_argument('--show', action='store_true', help='Show results.') |
|
parser.add_argument( |
|
'--out-dir', |
|
help='Directory where the output images and results will be saved.') |
|
parser.add_argument('--local_rank', type=int, default=0) |
|
parser.add_argument( |
|
'--device', |
|
help='Use int or int list for gpu. Default is cpu', |
|
default=None) |
|
args = parser.parse_args() |
|
if 'LOCAL_RANK' not in os.environ: |
|
os.environ['LOCAL_RANK'] = str(args.local_rank) |
|
|
|
return args |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
assert args.show or args.out_dir, ('Please specify at least one ' |
|
'operation (show the results / save )' |
|
'the results with the argument ' |
|
'"--show" or "--out-dir".') |
|
device = args.device |
|
if device is not None: |
|
device = ast.literal_eval(f'[{device}]') |
|
cfg = Config.fromfile(args.config) |
|
|
|
if cfg.get('custom_imports', None): |
|
from mmcv.utils import import_modules_from_strings |
|
import_modules_from_strings(**cfg['custom_imports']) |
|
|
|
if cfg.get('cudnn_benchmark', False): |
|
torch.backends.cudnn.benchmark = True |
|
|
|
distributed = False |
|
|
|
|
|
dataset = build_dataset(cfg.data.test) |
|
data_loader = build_dataloader( |
|
dataset, |
|
samples_per_gpu=1, |
|
workers_per_gpu=cfg.data.workers_per_gpu, |
|
dist=distributed, |
|
shuffle=False) |
|
|
|
|
|
cfg.model.train_cfg = None |
|
model = build_detector(cfg.model, test_cfg=cfg.get('test_cfg')) |
|
load_checkpoint(model, args.checkpoint, map_location='cpu') |
|
|
|
model = MMDataParallel(model, device_ids=device) |
|
test(model, data_loader, args.show, args.out_dir) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|