import gradio as gr import torch from diffusers import AutoencoderKLWan, WanPipeline from diffusers.utils import export_to_video import spaces # ZeroGPU integration @spaces.GPU # This decorator will request a GPU during initialization def load_pipeline(): model_id = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers" print("Loading model. This may take several minutes...") vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32) pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16) pipe.to("cuda") print("Model loaded successfully.") return pipe # Preload the model during startup PIPELINE = load_pipeline() def generate_video(prompt, negative_prompt=""): # Use the globally preloaded PIPELINE output = PIPELINE( prompt=prompt, negative_prompt=negative_prompt, height=480, # 480p height width=832, # Suitable width for 480p videos num_frames=81, # Adjust number of frames for desired video length guidance_scale=5.0 # Recommended guidance scale for the 1.3B model ).frames[0] video_path = "output.mp4" export_to_video(output, video_path, fps=15) return video_path # Create the Gradio interface iface = gr.Interface( fn=generate_video, inputs=[ gr.Textbox(label="Prompt", placeholder="Enter your video prompt here"), gr.Textbox(label="Negative Prompt", placeholder="Optional negative prompt", value="") ], outputs=gr.Video(label="Generated Video"), title="Wan2.1-T2V-1.3B Video Generator", description="Generate 480p videos using the Wan2.1-T2V-1.3B diffusers pipeline with ZeroGPU support." ) if __name__ == "__main__": iface.launch()