Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
|
4 |
+
from diffusers.utils import export_to_video
|
5 |
+
|
6 |
+
# Initialize the diffusion pipeline
|
7 |
+
pipe = DiffusionPipeline.from_pretrained(
|
8 |
+
"heboya8/text2video-test",
|
9 |
+
torch_dtype=torch.float16,
|
10 |
+
variant="fp16"
|
11 |
+
)
|
12 |
+
|
13 |
+
# Optimize for GPU memory
|
14 |
+
pipe.enable_model_cpu_offload()
|
15 |
+
pipe.enable_vae_slicing()
|
16 |
+
|
17 |
+
def generate_video(prompt):
|
18 |
+
try:
|
19 |
+
# Generate video frames
|
20 |
+
video_frames = pipe(
|
21 |
+
prompt,
|
22 |
+
num_inference_steps=50,
|
23 |
+
num_frames=200
|
24 |
+
).frames
|
25 |
+
|
26 |
+
# Export frames to video file
|
27 |
+
video_path = export_to_video(video_frames, output_video_path="output_video.mp4")
|
28 |
+
return video_path
|
29 |
+
except Exception as e:
|
30 |
+
return f"Error generating video: {str(e)}"
|
31 |
+
|
32 |
+
# Create Gradio interface
|
33 |
+
interface = gr.Interface(
|
34 |
+
fn=generate_video,
|
35 |
+
inputs=gr.Textbox(
|
36 |
+
label="Enter your prompt",
|
37 |
+
placeholder="e.g., a flower in a garden"
|
38 |
+
),
|
39 |
+
outputs=gr.Video(label="Generated Video"),
|
40 |
+
title="Text-to-Video Generator",
|
41 |
+
description="Enter a text prompt to generate a video using the diffusion model."
|
42 |
+
)
|
43 |
+
|
44 |
+
# Launch the app
|
45 |
+
interface.launch()
|