|
import gradio as gr |
|
from gradio_leaderboard import Leaderboard, SelectColumns |
|
|
|
from apscheduler.schedulers.background import BackgroundScheduler |
|
from huggingface_hub import snapshot_download |
|
|
|
from src.about import ( |
|
CITATION_BUTTON_LABEL, |
|
CITATION_BUTTON_TEXT, |
|
EVALUATION_QUEUE_TEXT, |
|
INTRODUCTION_TEXT, |
|
BENCHMARKS_TEXT, |
|
TITLE, |
|
) |
|
from src.display.css_html_js import custom_css |
|
from src.display.utils import ( |
|
COLS, |
|
AutoEvalColumn, |
|
fields |
|
) |
|
from src.envs import API, EVAL_RESULTS_PATH, REPO_ID, RESULTS_REPO, TOKEN |
|
from src.populate import get_leaderboard_df |
|
from src.submission.submit import add_new_eval |
|
|
|
|
|
def restart_space(): |
|
API.restart_space(repo_id=REPO_ID) |
|
|
|
|
|
try: |
|
snapshot_download( |
|
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN |
|
) |
|
except Exception: |
|
restart_space() |
|
|
|
|
|
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, COLS) |
|
|
|
|
|
def init_leaderboard(dataframe): |
|
if dataframe is None or dataframe.empty: |
|
raise ValueError("Leaderboard DataFrame is empty or None.") |
|
return Leaderboard( |
|
value=dataframe, |
|
datatype=[c.type for c in fields(AutoEvalColumn)], |
|
select_columns=SelectColumns( |
|
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default], |
|
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden], |
|
label="Select Columns to Display:", |
|
), |
|
search_columns=[AutoEvalColumn.result_name.name,AutoEvalColumn.eval_name.name], |
|
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], |
|
filter_columns=[], |
|
bool_checkboxgroup_label="Hide models", |
|
interactive=False, |
|
) |
|
|
|
|
|
|
|
def greet_user(profile: gr.OAuthProfile | None): |
|
if profile is None: |
|
return "β οΈ You are not logged in." |
|
return f"π Hello, **{profile.username}**!" |
|
|
|
|
|
demo = gr.Blocks(css=custom_css) |
|
with demo: |
|
gr.HTML(TITLE) |
|
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
with gr.TabItem("π
GridNet-HD Benchmark", elem_id="benchmark-tab-table", id=0): |
|
leaderboard = init_leaderboard(LEADERBOARD_DF) |
|
|
|
def reload_leaderboard(): |
|
|
|
print("reload_leaderboard") |
|
df = get_leaderboard_df(EVAL_RESULTS_PATH, COLS) |
|
return df |
|
|
|
demo.load( |
|
fn=reload_leaderboard, |
|
inputs=[], |
|
outputs=[leaderboard] |
|
) |
|
|
|
with gr.TabItem("π About", elem_id="benchmark-tab-table", id=2): |
|
gr.Markdown(BENCHMARKS_TEXT, elem_classes="markdown-text") |
|
|
|
|
|
with gr.TabItem("π Submit here! ", elem_id="benchmark-tab-table", id=3): |
|
with gr.Column(): |
|
with gr.Row(): |
|
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
gr.Markdown("# βοΈβ¨ Submit your result here!", elem_classes="markdown-text") |
|
with gr.Row(): |
|
gr.LoginButton() |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
greeting = gr.Markdown() |
|
demo.load(fn=greet_user, inputs=None, outputs=greeting) |
|
|
|
result_name_textbox = gr.Textbox(label="Result name") |
|
npz_files_input = gr.File(label="Upload NPZ files", file_types=[".npz"], file_count="multiple") |
|
remap = gr.Checkbox(label="Remap classes : check it if you upload original classes (evaluation will only be done on mapped classes.)", value=False) |
|
|
|
submit_button = gr.Button("Submit Eval") |
|
submission_result = gr.Markdown() |
|
submit_button.click( |
|
add_new_eval, |
|
[ |
|
|
|
result_name_textbox, |
|
npz_files_input, |
|
remap |
|
], |
|
submission_result, |
|
) |
|
|
|
|
|
with gr.Row(): |
|
with gr.Accordion("π Citation", open=False): |
|
citation_button = gr.Textbox( |
|
value=CITATION_BUTTON_TEXT, |
|
label=CITATION_BUTTON_LABEL, |
|
lines=20, |
|
elem_id="citation-button", |
|
show_copy_button=True, |
|
) |
|
|
|
scheduler = BackgroundScheduler() |
|
scheduler.add_job(restart_space, "interval", seconds=1800) |
|
scheduler.start() |
|
demo.queue(default_concurrency_limit=40).launch() |