add audio task
Browse files- tasks/audio.py +32 -14
tasks/audio.py
CHANGED
|
@@ -2,25 +2,34 @@ from fastapi import APIRouter
|
|
| 2 |
from datetime import datetime
|
| 3 |
from datasets import load_dataset
|
| 4 |
from sklearn.metrics import accuracy_score
|
|
|
|
|
|
|
|
|
|
| 5 |
import random
|
| 6 |
import os
|
|
|
|
| 7 |
|
| 8 |
from .utils.evaluation import AudioEvaluationRequest
|
| 9 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
|
|
|
|
|
|
|
|
|
| 10 |
|
|
|
|
| 11 |
from dotenv import load_dotenv
|
| 12 |
load_dotenv()
|
| 13 |
|
|
|
|
| 14 |
router = APIRouter()
|
| 15 |
|
| 16 |
-
DESCRIPTION = "
|
| 17 |
ROUTE = "/audio"
|
| 18 |
-
|
| 19 |
|
| 20 |
|
| 21 |
@router.post(ROUTE, tags=["Audio Task"],
|
| 22 |
description=DESCRIPTION)
|
| 23 |
-
async def evaluate_audio(request: AudioEvaluationRequest):
|
| 24 |
"""
|
| 25 |
Evaluate audio classification for rainforest sound detection.
|
| 26 |
|
|
@@ -38,34 +47,44 @@ async def evaluate_audio(request: AudioEvaluationRequest):
|
|
| 38 |
}
|
| 39 |
# Load and prepare the dataset
|
| 40 |
# Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate
|
| 41 |
-
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
|
| 44 |
-
train_test = dataset["train"]
|
| 45 |
test_dataset = dataset["test"]
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
# Start tracking emissions
|
| 48 |
tracker.start()
|
| 49 |
tracker.start_task("inference")
|
| 50 |
-
|
| 51 |
#--------------------------------------------------------------------------------------------
|
| 52 |
# YOUR MODEL INFERENCE CODE HERE
|
| 53 |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
| 54 |
#--------------------------------------------------------------------------------------------
|
|
|
|
| 55 |
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
predictions =
|
| 59 |
|
| 60 |
#--------------------------------------------------------------------------------------------
|
| 61 |
# YOUR MODEL INFERENCE STOPS HERE
|
| 62 |
#--------------------------------------------------------------------------------------------
|
| 63 |
-
|
| 64 |
# Stop tracking emissions
|
| 65 |
emissions_data = tracker.stop_task()
|
| 66 |
|
| 67 |
# Calculate accuracy
|
| 68 |
accuracy = accuracy_score(true_labels, predictions)
|
|
|
|
| 69 |
|
| 70 |
# Prepare results dictionary
|
| 71 |
results = {
|
|
@@ -84,5 +103,4 @@ async def evaluate_audio(request: AudioEvaluationRequest):
|
|
| 84 |
"test_seed": request.test_seed
|
| 85 |
}
|
| 86 |
}
|
| 87 |
-
|
| 88 |
-
return results
|
|
|
|
| 2 |
from datetime import datetime
|
| 3 |
from datasets import load_dataset
|
| 4 |
from sklearn.metrics import accuracy_score
|
| 5 |
+
from accelerate import Accelerator
|
| 6 |
+
from tqdm import tqdm
|
| 7 |
+
from torch.amp import autocast
|
| 8 |
import random
|
| 9 |
import os
|
| 10 |
+
import torch
|
| 11 |
|
| 12 |
from .utils.evaluation import AudioEvaluationRequest
|
| 13 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
| 14 |
+
from audio_utils import AudioClassifier, AudioDataset, Config, collate_fn, Evaluator
|
| 15 |
+
from transformers import AutoModelForImageClassification
|
| 16 |
+
from torch.utils.data import DataLoader
|
| 17 |
|
| 18 |
+
from loguru import logger
|
| 19 |
from dotenv import load_dotenv
|
| 20 |
load_dotenv()
|
| 21 |
|
| 22 |
+
|
| 23 |
router = APIRouter()
|
| 24 |
|
| 25 |
+
DESCRIPTION = "Audio pipeline to classify sounds."
|
| 26 |
ROUTE = "/audio"
|
| 27 |
+
device = "cuda"
|
| 28 |
|
| 29 |
|
| 30 |
@router.post(ROUTE, tags=["Audio Task"],
|
| 31 |
description=DESCRIPTION)
|
| 32 |
+
async def evaluate_audio(request: AudioEvaluationRequest): #, model_path: str):
|
| 33 |
"""
|
| 34 |
Evaluate audio classification for rainforest sound detection.
|
| 35 |
|
|
|
|
| 47 |
}
|
| 48 |
# Load and prepare the dataset
|
| 49 |
# Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate
|
| 50 |
+
config = Config()
|
| 51 |
+
accelerator = Accelerator()
|
| 52 |
+
device = accelerator.device
|
| 53 |
|
| 54 |
+
dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN"))
|
|
|
|
| 55 |
test_dataset = dataset["test"]
|
| 56 |
+
test_dataset = test_dataset.filter(lambda x: len(x["audio"]["array"]) > 0)
|
| 57 |
+
true_labels = test_dataset["label"]
|
| 58 |
+
|
| 59 |
+
test_dataset = AudioDataset(test_dataset)
|
| 60 |
+
test_loader = DataLoader(test_dataset, batch_size=2 * config.BATCH_SIZE, shuffle=False, collate_fn=collate_fn, num_workers=config.NUM_WORKERS, pin_memory=True)
|
| 61 |
+
|
| 62 |
+
model = AudioClassifier(config.MODEL_NAME, config.MODEL_PATH)
|
| 63 |
+
model, test_loader = accelerator.prepare(model, test_loader)
|
| 64 |
+
|
| 65 |
# Start tracking emissions
|
| 66 |
tracker.start()
|
| 67 |
tracker.start_task("inference")
|
| 68 |
+
|
| 69 |
#--------------------------------------------------------------------------------------------
|
| 70 |
# YOUR MODEL INFERENCE CODE HERE
|
| 71 |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
| 72 |
#--------------------------------------------------------------------------------------------
|
| 73 |
+
predictions = []
|
| 74 |
|
| 75 |
+
logger.info("Running inference ...")
|
| 76 |
+
evaluator = Evaluator(model, test_loader, device)
|
| 77 |
+
predictions = evaluator.evaluate()
|
| 78 |
|
| 79 |
#--------------------------------------------------------------------------------------------
|
| 80 |
# YOUR MODEL INFERENCE STOPS HERE
|
| 81 |
#--------------------------------------------------------------------------------------------
|
|
|
|
| 82 |
# Stop tracking emissions
|
| 83 |
emissions_data = tracker.stop_task()
|
| 84 |
|
| 85 |
# Calculate accuracy
|
| 86 |
accuracy = accuracy_score(true_labels, predictions)
|
| 87 |
+
print("accuracy", accuracy)
|
| 88 |
|
| 89 |
# Prepare results dictionary
|
| 90 |
results = {
|
|
|
|
| 103 |
"test_seed": request.test_seed
|
| 104 |
}
|
| 105 |
}
|
| 106 |
+
return results
|
|
|