Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from PIL import Image | |
import time | |
import numpy as np | |
from einops import rearrange | |
from transformers import pipeline | |
from concept_attention.flux.src.flux.cli import SamplingOptions | |
from concept_attention.flux.src.flux.sampling import denoise, get_noise, get_schedule, prepare, unpack | |
from concept_attention.flux.src.flux.util import configs, embed_watermark, load_ae, load_clip, load_t5 | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file as load_sft | |
from concept_attention.modified_double_stream_block import ModifiedDoubleStreamBlock | |
from concept_attention.modified_flux_dit import ModifiedFluxDiT | |
from concept_attention.utils import embed_concepts | |
def load_flow_model( | |
name: str, | |
device: str | torch.device = "cuda", | |
hf_download: bool = True, | |
attention_block_class=ModifiedDoubleStreamBlock, | |
dit_class=ModifiedFluxDiT | |
): | |
# Loading Flux | |
print("Init model") | |
ckpt_path = configs[name].ckpt_path | |
if ( | |
ckpt_path is None | |
and configs[name].repo_id is not None | |
and configs[name].repo_flow is not None | |
and hf_download | |
): | |
ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_flow) | |
with torch.device("meta" if ckpt_path is not None else device): | |
model = dit_class(configs[name].params, attention_block_class=attention_block_class).to(torch.bfloat16) | |
if ckpt_path is not None: | |
print("Loading checkpoint") | |
# load_sft doesn't support torch.device | |
sd = load_sft(ckpt_path, device=str(device)) | |
missing, unexpected = model.load_state_dict(sd, strict=False, assign=True) | |
# print_load_warning(missing, unexpected) | |
return model | |
def get_models( | |
name: str, | |
device: torch.device, | |
offload: bool, | |
is_schnell: bool, | |
attention_block_class=ModifiedDoubleStreamBlock, | |
dit_class=ModifiedFluxDiT | |
): | |
t5 = load_t5(device, max_length=256 if is_schnell else 512) | |
clip = load_clip(device) | |
model = load_flow_model(name, device="cpu" if offload else device, attention_block_class=attention_block_class, dit_class=dit_class) | |
ae = load_ae(name, device="cpu" if offload else device) | |
return model, ae, t5, clip, None | |
class FluxGenerator(): | |
def __init__( | |
self, | |
model_name: str, | |
device: str, | |
offload: bool, | |
attention_block_class=ModifiedDoubleStreamBlock, | |
dit_class=ModifiedFluxDiT | |
): | |
self.device = torch.device(device) | |
self.offload = offload | |
self.model_name = model_name | |
self.is_schnell = model_name == "flux-schnell" | |
self.model, self.ae, self.t5, self.clip, self.nsfw_classifier = get_models( | |
model_name, | |
device=self.device, | |
offload=self.offload, | |
is_schnell=self.is_schnell, | |
attention_block_class=attention_block_class, | |
dit_class=dit_class | |
) | |
def generate_image( | |
self, | |
width, | |
height, | |
num_steps, | |
guidance, | |
seed, | |
prompt, | |
concepts, | |
init_image=None, | |
image2image_strength=0.0, | |
add_sampling_metadata=True, | |
restrict_clip_guidance=False, | |
joint_attention_kwargs=None, | |
): | |
seed = int(seed) | |
if seed == -1: | |
seed = None | |
opts = SamplingOptions( | |
prompt=prompt, | |
width=width, | |
height=height, | |
num_steps=num_steps, | |
guidance=guidance, | |
seed=seed, | |
) | |
if opts.seed is None: | |
opts.seed = torch.Generator(device="cpu").seed() | |
print(f"Generating '{opts.prompt}' with seed {opts.seed}") | |
t0 = time.perf_counter() | |
if init_image is not None: | |
if isinstance(init_image, np.ndarray): | |
init_image = torch.from_numpy(init_image).permute(2, 0, 1).float() / 255.0 | |
init_image = init_image.unsqueeze(0) | |
init_image = init_image.to(self.device) | |
init_image = torch.nn.functional.interpolate(init_image, (opts.height, opts.width)) | |
if self.offload: | |
self.ae.encoder.to(self.device) | |
init_image = self.ae.encode(init_image.to()) | |
if self.offload: | |
self.ae = self.ae.cpu() | |
torch.cuda.empty_cache() | |
# prepare input | |
x = get_noise( | |
1, | |
opts.height, | |
opts.width, | |
device=self.device, | |
dtype=torch.bfloat16, | |
seed=opts.seed, | |
) | |
timesteps = get_schedule( | |
opts.num_steps, | |
x.shape[-1] * x.shape[-2] // 4, | |
shift=(not self.is_schnell), | |
) | |
if init_image is not None: | |
t_idx = int((1 - image2image_strength) * num_steps) | |
t = timesteps[t_idx] | |
timesteps = timesteps[t_idx:] | |
x = t * x + (1.0 - t) * init_image.to(x.dtype) | |
if self.offload: | |
self.t5, self.clip = self.t5.to(self.device), self.clip.to(self.device) | |
inp = prepare(t5=self.t5, clip=self.clip, img=x, prompt=opts.prompt, restrict_clip_guidance=restrict_clip_guidance) | |
############ Encode the concept ############ | |
concept_embeddings, concept_ids, concept_vec = embed_concepts( | |
self.clip, | |
self.t5, | |
concepts, | |
) | |
inp["concepts"] = concept_embeddings.to(x.device) | |
inp["concept_ids"] = concept_ids.to(x.device) | |
inp["concept_vec"] = concept_vec.to(x.device) | |
########################################### | |
# offload TEs to CPU, load model to gpu | |
if self.offload: | |
self.t5, self.clip = self.t5.cpu(), self.clip.cpu() | |
torch.cuda.empty_cache() | |
self.model = self.model.to(self.device) | |
# denoise initial noise | |
x, intermediate_images, cross_attention_maps, concept_attention_maps = denoise( | |
self.model, | |
**inp, | |
timesteps=timesteps, | |
guidance=opts.guidance, | |
joint_attention_kwargs=joint_attention_kwargs | |
) | |
# offload model, load autoencoder to gpu | |
if self.offload: | |
self.model.cpu() | |
torch.cuda.empty_cache() | |
self.ae.decoder.to(x.device) | |
# decode latents to pixel space | |
x = unpack(x.float(), opts.height, opts.width) | |
with torch.autocast(device_type=self.device.type, dtype=torch.bfloat16): | |
x = self.ae.decode(x) | |
if self.offload: | |
self.ae.decoder.cpu() | |
torch.cuda.empty_cache() | |
t1 = time.perf_counter() | |
print(f"Done in {t1 - t0:.1f}s.") | |
# bring into PIL format | |
x = x.clamp(-1, 1) | |
x = embed_watermark(x.float()) | |
x = rearrange(x[0], "c h w -> h w c") | |
img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy()) | |
return img, cross_attention_maps, concept_attention_maps |