Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
55866f4
0
Parent(s):
"Orphan branch commit with a readme"
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitignore +5 -0
- README.md +7 -0
- app.py +140 -0
- concept_attention/__init__.py +2 -0
- concept_attention/binary_segmentation_baselines/__init__.py +0 -0
- concept_attention/binary_segmentation_baselines/__pycache__/__init__.cpython-310.pyc +0 -0
- concept_attention/binary_segmentation_baselines/__pycache__/chefer_clip_vit_baselines.cpython-310.pyc +0 -0
- concept_attention/binary_segmentation_baselines/__pycache__/clip_text_span_baseline.cpython-310.pyc +0 -0
- concept_attention/binary_segmentation_baselines/__pycache__/daam.cpython-310.pyc +0 -0
- concept_attention/binary_segmentation_baselines/__pycache__/daam_sd2.cpython-310.pyc +0 -0
- concept_attention/binary_segmentation_baselines/__pycache__/daam_sdxl.cpython-310.pyc +0 -0
- concept_attention/binary_segmentation_baselines/__pycache__/dino.cpython-310.pyc +0 -0
- concept_attention/binary_segmentation_baselines/__pycache__/raw_cross_attention.cpython-310.pyc +0 -0
- concept_attention/binary_segmentation_baselines/__pycache__/raw_output_space.cpython-310.pyc +0 -0
- concept_attention/binary_segmentation_baselines/__pycache__/raw_value_space.cpython-310.pyc +0 -0
- concept_attention/binary_segmentation_baselines/chefer_clip_vit_baselines.py +272 -0
- concept_attention/binary_segmentation_baselines/chefer_vit_explainability/ViT_LRP.py +437 -0
- concept_attention/binary_segmentation_baselines/chefer_vit_explainability/ViT_explanation_generator.py +83 -0
- concept_attention/binary_segmentation_baselines/chefer_vit_explainability/ViT_new.py +238 -0
- concept_attention/binary_segmentation_baselines/chefer_vit_explainability/ViT_orig_LRP.py +425 -0
- concept_attention/binary_segmentation_baselines/chefer_vit_explainability/__pycache__/ViT_LRP.cpython-310.pyc +0 -0
- concept_attention/binary_segmentation_baselines/chefer_vit_explainability/__pycache__/ViT_explanation_generator.cpython-310.pyc +0 -0
- concept_attention/binary_segmentation_baselines/chefer_vit_explainability/__pycache__/ViT_new.cpython-310.pyc +0 -0
- concept_attention/binary_segmentation_baselines/chefer_vit_explainability/__pycache__/ViT_orig_LRP.cpython-310.pyc +0 -0
- concept_attention/binary_segmentation_baselines/chefer_vit_explainability/__pycache__/helpers.cpython-310.pyc +0 -0
- concept_attention/binary_segmentation_baselines/chefer_vit_explainability/__pycache__/layer_helpers.cpython-310.pyc +0 -0
- concept_attention/binary_segmentation_baselines/chefer_vit_explainability/__pycache__/weight_init.cpython-310.pyc +0 -0
- concept_attention/binary_segmentation_baselines/chefer_vit_explainability/data/VOC.py +395 -0
- concept_attention/binary_segmentation_baselines/chefer_vit_explainability/data/__init__.py +0 -0
- concept_attention/binary_segmentation_baselines/chefer_vit_explainability/data/__pycache__/Imagenet.cpython-310.pyc +0 -0
- concept_attention/binary_segmentation_baselines/chefer_vit_explainability/data/__pycache__/VOC.cpython-310.pyc +0 -0
- concept_attention/binary_segmentation_baselines/chefer_vit_explainability/data/__pycache__/__init__.cpython-310.pyc +0 -0
- concept_attention/binary_segmentation_baselines/chefer_vit_explainability/data/__pycache__/imagenet.cpython-310.pyc +0 -0
- concept_attention/binary_segmentation_baselines/chefer_vit_explainability/data/imagenet.py +200 -0
- concept_attention/binary_segmentation_baselines/chefer_vit_explainability/data/imagenet_utils.py +1002 -0
- concept_attention/binary_segmentation_baselines/chefer_vit_explainability/data/transforms.py +442 -0
- concept_attention/binary_segmentation_baselines/chefer_vit_explainability/generate_visualizations.py +208 -0
- concept_attention/binary_segmentation_baselines/chefer_vit_explainability/helpers.py +295 -0
- concept_attention/binary_segmentation_baselines/chefer_vit_explainability/layer_helpers.py +21 -0
- concept_attention/binary_segmentation_baselines/chefer_vit_explainability/misc_functions.py +68 -0
- concept_attention/binary_segmentation_baselines/chefer_vit_explainability/modules/__init__.py +0 -0
- concept_attention/binary_segmentation_baselines/chefer_vit_explainability/modules/__pycache__/__init__.cpython-310.pyc +0 -0
- concept_attention/binary_segmentation_baselines/chefer_vit_explainability/modules/__pycache__/layers_lrp.cpython-310.pyc +0 -0
- concept_attention/binary_segmentation_baselines/chefer_vit_explainability/modules/__pycache__/layers_ours.cpython-310.pyc +0 -0
- concept_attention/binary_segmentation_baselines/chefer_vit_explainability/modules/layers_lrp.py +261 -0
- concept_attention/binary_segmentation_baselines/chefer_vit_explainability/modules/layers_ours.py +280 -0
- concept_attention/binary_segmentation_baselines/chefer_vit_explainability/pertubation_eval_from_hdf5.py +232 -0
- concept_attention/binary_segmentation_baselines/chefer_vit_explainability/utils/__init__.py +0 -0
- concept_attention/binary_segmentation_baselines/chefer_vit_explainability/utils/__pycache__/__init__.cpython-310.pyc +0 -0
- concept_attention/binary_segmentation_baselines/chefer_vit_explainability/utils/__pycache__/confusionmatrix.cpython-310.pyc +0 -0
.gitignore
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.png
|
2 |
+
*.pyc
|
3 |
+
concept_attention.egg-info
|
4 |
+
concept_attention/flux/src/flux.egg-info/PKG-INFO
|
5 |
+
*.pyc
|
README.md
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: ConceptAttention
|
3 |
+
sdk: gradio
|
4 |
+
sdk_version: "5.15.0"
|
5 |
+
app_file: app.py
|
6 |
+
pinned: false
|
7 |
+
---
|
app.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import io
|
3 |
+
|
4 |
+
import spaces
|
5 |
+
import gradio as gr
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
from concept_attention import ConceptAttentionFluxPipeline
|
9 |
+
|
10 |
+
concept_attention_default_args = {
|
11 |
+
"model_name": "flux-schnell",
|
12 |
+
"device": "cuda",
|
13 |
+
"layer_indices": list(range(10, 19)),
|
14 |
+
"timesteps": list(range(4)),
|
15 |
+
"num_samples": 4,
|
16 |
+
"num_inference_steps": 4
|
17 |
+
}
|
18 |
+
IMG_SIZE = 250
|
19 |
+
|
20 |
+
EXAMPLES = [
|
21 |
+
[
|
22 |
+
"A fluffy cat sitting on a windowsill", # prompt
|
23 |
+
"cat.jpg", # image
|
24 |
+
"fur, whiskers, eyes", # words
|
25 |
+
42, # seed
|
26 |
+
],
|
27 |
+
# ["Mountain landscape with lake", "cat.jpg", "sky, trees, water", 123],
|
28 |
+
# ["Portrait of a young woman", "monkey.png", "face, hair, eyes", 456],
|
29 |
+
]
|
30 |
+
|
31 |
+
|
32 |
+
pipeline = ConceptAttentionFluxPipeline(model_name="flux-schnell", device="cuda")
|
33 |
+
|
34 |
+
|
35 |
+
@spaces.GPU(duration=60)
|
36 |
+
def process_inputs(prompt, input_image, word_list, seed):
|
37 |
+
prompt = prompt.strip()
|
38 |
+
if not word_list.strip():
|
39 |
+
return None, "Please enter comma-separated words"
|
40 |
+
|
41 |
+
concepts = [w.strip() for w in word_list.split(",")]
|
42 |
+
|
43 |
+
if input_image is not None:
|
44 |
+
input_image = Image.fromarray(input_image)
|
45 |
+
input_image = input_image.convert("RGB")
|
46 |
+
input_image = input_image.resize((1024, 1024))
|
47 |
+
|
48 |
+
pipeline_output = pipeline.encode_image(
|
49 |
+
image=input_image,
|
50 |
+
concepts=concepts,
|
51 |
+
prompt=prompt,
|
52 |
+
width=1024,
|
53 |
+
height=1024,
|
54 |
+
seed=seed,
|
55 |
+
num_samples=concept_attention_default_args["num_samples"]
|
56 |
+
)
|
57 |
+
else:
|
58 |
+
pipeline_output = pipeline.generate_image(
|
59 |
+
prompt=prompt,
|
60 |
+
concepts=concepts,
|
61 |
+
width=1024,
|
62 |
+
height=1024,
|
63 |
+
seed=seed,
|
64 |
+
timesteps=concept_attention_default_args["timesteps"],
|
65 |
+
num_inference_steps=concept_attention_default_args["num_inference_steps"],
|
66 |
+
)
|
67 |
+
|
68 |
+
output_image = pipeline_output.image
|
69 |
+
concept_heatmaps = pipeline_output.concept_heatmaps
|
70 |
+
|
71 |
+
html_elements = []
|
72 |
+
for concept, heatmap in zip(concepts, concept_heatmaps):
|
73 |
+
img = heatmap.resize((IMG_SIZE, IMG_SIZE), resample=Image.NEAREST)
|
74 |
+
buffered = io.BytesIO()
|
75 |
+
img.save(buffered, format="PNG")
|
76 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
77 |
+
|
78 |
+
html = f"""
|
79 |
+
<div style='text-align: center; margin: 5px; padding: 5px; overflow-x: auto; white-space: nowrap;'>
|
80 |
+
<h1 style='margin-bottom: 10px;'>{concept}</h1>
|
81 |
+
<img src='data:image/png;base64,{img_str}' style='width: {IMG_SIZE}px; display: inline-block; height: {IMG_SIZE}px;'>
|
82 |
+
</div>
|
83 |
+
"""
|
84 |
+
html_elements.append(html)
|
85 |
+
|
86 |
+
combined_html = "<div style='display: flex; flex-wrap: wrap; justify-content: center;'>" + "".join(html_elements) + "</div>"
|
87 |
+
return output_image, combined_html
|
88 |
+
|
89 |
+
|
90 |
+
with gr.Blocks(
|
91 |
+
css="""
|
92 |
+
.container { max-width: 1200px; margin: 0 auto; padding: 20px; }
|
93 |
+
.title { text-align: center; margin-bottom: 10px; }
|
94 |
+
.authors { text-align: center; margin-bottom: 20px; }
|
95 |
+
.affiliations { text-align: center; color: #666; margin-bottom: 40px; }
|
96 |
+
.content { display: grid; grid-template-columns: 1fr 1fr; gap: 20px; }
|
97 |
+
.section { border: 2px solid #ddd; border-radius: 10px; padding: 20px; }
|
98 |
+
"""
|
99 |
+
) as demo:
|
100 |
+
with gr.Column(elem_classes="container"):
|
101 |
+
gr.Markdown("# ConceptAttention: Diffusion Transformers Learn Highly Interpretable Features", elem_classes="title")
|
102 |
+
gr.Markdown("**Alec Helbling**¹, **Tuna Meral**², **Ben Hoover**¹³, **Pinar Yanardag**², **Duen Horng (Polo) Chau**¹", elem_classes="authors")
|
103 |
+
gr.Markdown("¹Georgia Tech · ²Virginia Tech · ³IBM Research", elem_classes="affiliations")
|
104 |
+
|
105 |
+
with gr.Row(elem_classes="content"):
|
106 |
+
with gr.Column(elem_classes="section"):
|
107 |
+
gr.Markdown("### Input")
|
108 |
+
prompt = gr.Textbox(label="Enter your prompt")
|
109 |
+
words = gr.Textbox(label="Enter words (comma-separated)")
|
110 |
+
seed = gr.Slider(minimum=0, maximum=10000, step=1, label="Seed", value=42)
|
111 |
+
gr.HTML("<div style='text-align: center;'> <h1> Or </h1> </div>")
|
112 |
+
image_input = gr.Image(type="numpy", label="Upload image (optional)")
|
113 |
+
|
114 |
+
with gr.Column(elem_classes="section"):
|
115 |
+
gr.Markdown("### Output")
|
116 |
+
output_image = gr.Image(type="numpy", label="Output image")
|
117 |
+
|
118 |
+
with gr.Row():
|
119 |
+
submit_btn = gr.Button("Process")
|
120 |
+
|
121 |
+
with gr.Row(elem_classes="section"):
|
122 |
+
saliency_display = gr.HTML(label="Saliency Maps")
|
123 |
+
|
124 |
+
submit_btn.click(
|
125 |
+
fn=process_inputs,
|
126 |
+
inputs=[prompt, image_input, words, seed], outputs=[output_image, saliency_display]
|
127 |
+
)
|
128 |
+
|
129 |
+
gr.Examples(examples=EXAMPLES, inputs=[prompt, image_input, words, seed], outputs=[output_image, saliency_display], fn=process_inputs, cache_examples=False)
|
130 |
+
|
131 |
+
if __name__ == "__main__":
|
132 |
+
demo.launch(
|
133 |
+
share=True,
|
134 |
+
server_name="0.0.0.0",
|
135 |
+
inbrowser=True,
|
136 |
+
# share=False,
|
137 |
+
server_port=6754,
|
138 |
+
quiet=True,
|
139 |
+
max_threads=1
|
140 |
+
)
|
concept_attention/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from concept_attention.concept_attention_pipeline import ConceptAttentionFluxPipeline
|
concept_attention/binary_segmentation_baselines/__init__.py
ADDED
File without changes
|
concept_attention/binary_segmentation_baselines/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (214 Bytes). View file
|
|
concept_attention/binary_segmentation_baselines/__pycache__/chefer_clip_vit_baselines.cpython-310.pyc
ADDED
Binary file (7.18 kB). View file
|
|
concept_attention/binary_segmentation_baselines/__pycache__/clip_text_span_baseline.cpython-310.pyc
ADDED
Binary file (3.66 kB). View file
|
|
concept_attention/binary_segmentation_baselines/__pycache__/daam.cpython-310.pyc
ADDED
Binary file (2.52 kB). View file
|
|
concept_attention/binary_segmentation_baselines/__pycache__/daam_sd2.cpython-310.pyc
ADDED
Binary file (3.81 kB). View file
|
|
concept_attention/binary_segmentation_baselines/__pycache__/daam_sdxl.cpython-310.pyc
ADDED
Binary file (4.69 kB). View file
|
|
concept_attention/binary_segmentation_baselines/__pycache__/dino.cpython-310.pyc
ADDED
Binary file (2.93 kB). View file
|
|
concept_attention/binary_segmentation_baselines/__pycache__/raw_cross_attention.cpython-310.pyc
ADDED
Binary file (6.26 kB). View file
|
|
concept_attention/binary_segmentation_baselines/__pycache__/raw_output_space.cpython-310.pyc
ADDED
Binary file (7 kB). View file
|
|
concept_attention/binary_segmentation_baselines/__pycache__/raw_value_space.cpython-310.pyc
ADDED
Binary file (6.64 kB). View file
|
|
concept_attention/binary_segmentation_baselines/chefer_clip_vit_baselines.py
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This is just a wrapper around the various baselines implemented in the
|
3 |
+
Chefer et. al. Transformer Explainability repository.
|
4 |
+
|
5 |
+
Implements
|
6 |
+
- CheferLRPSegmentationModel
|
7 |
+
- CheferRolloutSegmentationModel
|
8 |
+
- CheferLastLayerAttentionSegmentationModel
|
9 |
+
- CheferAttentionGradCAMSegmentationModel
|
10 |
+
- CheferTransformerAttributionSegmentationModel
|
11 |
+
- CheferFullLRPSegmentationModel
|
12 |
+
- CheferLastLayerLRPSegmentationModel
|
13 |
+
"""
|
14 |
+
|
15 |
+
# # segmentation test for the rollout baseline
|
16 |
+
# if args.method == 'rollout':
|
17 |
+
# Res = baselines.generate_rollout(image.cuda(), start_layer=1).reshape(batch_size, 1, 14, 14)
|
18 |
+
|
19 |
+
# # segmentation test for the LRP baseline (this is full LRP, not partial)
|
20 |
+
# elif args.method == 'full_lrp':
|
21 |
+
# Res = orig_lrp.generate_LRP(image.cuda(), method="full").reshape(batch_size, 1, 224, 224)
|
22 |
+
|
23 |
+
# # segmentation test for our method
|
24 |
+
# elif args.method == 'transformer_attribution':
|
25 |
+
# Res = lrp.generate_LRP(image.cuda(), start_layer=1, method="transformer_attribution").reshape(batch_size, 1, 14, 14)
|
26 |
+
|
27 |
+
# # segmentation test for the partial LRP baseline (last attn layer)
|
28 |
+
# elif args.method == 'lrp_last_layer':
|
29 |
+
# Res = orig_lrp.generate_LRP(image.cuda(), method="last_layer", is_ablation=args.is_ablation)\
|
30 |
+
# .reshape(batch_size, 1, 14, 14)
|
31 |
+
|
32 |
+
# # segmentation test for the raw attention baseline (last attn layer)
|
33 |
+
# elif args.method == 'attn_last_layer':
|
34 |
+
# Res = orig_lrp.generate_LRP(image.cuda(), method="last_layer_attn", is_ablation=args.is_ablation)\
|
35 |
+
# .reshape(batch_size, 1, 14, 14)
|
36 |
+
|
37 |
+
# # segmentation test for the GradCam baseline (last attn layer)
|
38 |
+
# elif args.method == 'attn_gradcam':
|
39 |
+
# Res = baselines.generate_cam_attn(image.cuda()).reshape(batch_size, 1, 14, 14)
|
40 |
+
|
41 |
+
# if args.method != 'full_lrp':
|
42 |
+
# # interpolate to full image size (224,224)
|
43 |
+
# Res = torch.nn.functional.interpolate(Res, scale_factor=16, mode='bilinear').cuda()
|
44 |
+
|
45 |
+
import torch
|
46 |
+
import PIL
|
47 |
+
|
48 |
+
from concept_attention.binary_segmentation_baselines.chefer_vit_explainability.ViT_explanation_generator import LRP
|
49 |
+
from concept_attention.segmentation import SegmentationAbstractClass
|
50 |
+
from concept_attention.binary_segmentation_baselines.chefer_vit_explainability.ViT_explanation_generator import Baselines, LRP
|
51 |
+
from concept_attention.binary_segmentation_baselines.chefer_vit_explainability.ViT_new import vit_base_patch16_224
|
52 |
+
from concept_attention.binary_segmentation_baselines.chefer_vit_explainability.ViT_LRP import vit_base_patch16_224 as vit_LRP
|
53 |
+
from concept_attention.binary_segmentation_baselines.chefer_vit_explainability.ViT_orig_LRP import vit_base_patch16_224 as vit_orig_LRP
|
54 |
+
|
55 |
+
|
56 |
+
# # Model
|
57 |
+
# model = vit_base_patch16_224(pretrained=True).cuda()
|
58 |
+
# baselines = Baselines(model)
|
59 |
+
|
60 |
+
# # LRP
|
61 |
+
# model_LRP = vit_LRP(pretrained=True).cuda()
|
62 |
+
# model_LRP.eval()
|
63 |
+
# lrp = LRP(model_LRP)
|
64 |
+
|
65 |
+
# # orig LRP
|
66 |
+
# model_orig_LRP = vit_orig_LRP(pretrained=True).cuda()
|
67 |
+
# model_orig_LRP.eval()
|
68 |
+
# orig_lrp = LRP(model_orig_LRP)
|
69 |
+
|
70 |
+
# model.eval()
|
71 |
+
|
72 |
+
class CheferLRPSegmentationModel(SegmentationAbstractClass):
|
73 |
+
|
74 |
+
def __init__(
|
75 |
+
self,
|
76 |
+
device: str = "cuda",
|
77 |
+
width: int = 224,
|
78 |
+
height: int = 224,
|
79 |
+
):
|
80 |
+
"""
|
81 |
+
Initialize the segmentation model.
|
82 |
+
"""
|
83 |
+
super(CheferLRPSegmentationModel, self).__init__()
|
84 |
+
self.width = width
|
85 |
+
self.height = height
|
86 |
+
self.device = device
|
87 |
+
# Load the LRP model
|
88 |
+
model_orig_LRP = vit_orig_LRP(pretrained=True).to(self.device)
|
89 |
+
model_orig_LRP.eval()
|
90 |
+
self.orig_lrp = LRP(model_orig_LRP)
|
91 |
+
|
92 |
+
def segment_individual_image(self, image: torch.Tensor, concepts: list[str], caption: str, **kwargs):
|
93 |
+
"""
|
94 |
+
Takes a real image and generates a concept segmentation map
|
95 |
+
it by adding noise and running the DiT on it.
|
96 |
+
"""
|
97 |
+
if len(image.shape) == 3:
|
98 |
+
image = image.unsqueeze(0)
|
99 |
+
|
100 |
+
prediction_map = self.orig_lrp.generate_LRP(
|
101 |
+
image.to(self.device),
|
102 |
+
method="full"
|
103 |
+
)
|
104 |
+
prediction_map = prediction_map.unsqueeze(0)
|
105 |
+
# Rescale the prediction map to 64x64
|
106 |
+
prediction_map = torch.nn.functional.interpolate(
|
107 |
+
prediction_map,
|
108 |
+
size=(self.width, self.height),
|
109 |
+
mode="nearest"
|
110 |
+
).reshape(1, self.width, self.height)
|
111 |
+
|
112 |
+
return prediction_map, None
|
113 |
+
|
114 |
+
class CheferRolloutSegmentationModel(SegmentationAbstractClass):
|
115 |
+
|
116 |
+
def __init__(self, device: str = "cuda", width: int = 224, height: int = 224):
|
117 |
+
super(CheferRolloutSegmentationModel, self).__init__()
|
118 |
+
self.width = width
|
119 |
+
self.height = height
|
120 |
+
self.device = device
|
121 |
+
model = vit_base_patch16_224(pretrained=True).to(device)
|
122 |
+
self.baselines = Baselines(model)
|
123 |
+
|
124 |
+
def segment_individual_image(self, image: torch.Tensor, concepts: list[str], caption: str, **kwargs):
|
125 |
+
if len(image.shape) == 3:
|
126 |
+
image = image.unsqueeze(0)
|
127 |
+
prediction_map = self.baselines.generate_rollout(
|
128 |
+
image.to(self.device), start_layer=1
|
129 |
+
).reshape(1, 1, 14, 14)
|
130 |
+
# Rescale the prediction map to 64x64
|
131 |
+
prediction_map = torch.nn.functional.interpolate(
|
132 |
+
prediction_map,
|
133 |
+
size=(self.width, self.height),
|
134 |
+
mode="nearest"
|
135 |
+
).reshape(1, self.width, self.height)
|
136 |
+
|
137 |
+
return prediction_map, None
|
138 |
+
|
139 |
+
|
140 |
+
class CheferLastLayerAttentionSegmentationModel(SegmentationAbstractClass):
|
141 |
+
|
142 |
+
def __init__(self, device: str = "cuda", width: int = 224, height: int = 224):
|
143 |
+
super(CheferLastLayerAttentionSegmentationModel, self).__init__()
|
144 |
+
self.width = width
|
145 |
+
self.height = height
|
146 |
+
self.device = device
|
147 |
+
model_orig_LRP = vit_orig_LRP(pretrained=True).to(device)
|
148 |
+
model_orig_LRP.eval()
|
149 |
+
self.orig_lrp = LRP(model_orig_LRP)
|
150 |
+
|
151 |
+
def segment_individual_image(self, image: torch.Tensor, concepts: list[str], caption: str, **kwargs):
|
152 |
+
if len(image.shape) == 3:
|
153 |
+
image = image.unsqueeze(0)
|
154 |
+
|
155 |
+
prediction_map = self.orig_lrp.generate_LRP(
|
156 |
+
image.to(self.device), method="last_layer_attn"
|
157 |
+
).reshape(1, 1, 14, 14)
|
158 |
+
# Rescale the prediction map to 64x64
|
159 |
+
prediction_map = torch.nn.functional.interpolate(
|
160 |
+
prediction_map,
|
161 |
+
size=(self.width, self.height),
|
162 |
+
mode="nearest"
|
163 |
+
).reshape(1, self.width, self.height)
|
164 |
+
|
165 |
+
return prediction_map, None
|
166 |
+
|
167 |
+
|
168 |
+
class CheferAttentionGradCAMSegmentationModel(SegmentationAbstractClass):
|
169 |
+
|
170 |
+
def __init__(self, device: str = "cuda", width: int = 224, height: int = 224):
|
171 |
+
super(CheferAttentionGradCAMSegmentationModel, self).__init__()
|
172 |
+
self.width = width
|
173 |
+
self.height = height
|
174 |
+
self.device = device
|
175 |
+
model = vit_base_patch16_224(pretrained=True).to(device)
|
176 |
+
self.baselines = Baselines(model)
|
177 |
+
|
178 |
+
def segment_individual_image(self, image: torch.Tensor, concepts: list[str], caption: str, **kwargs):
|
179 |
+
if len(image.shape) == 3:
|
180 |
+
image = image.unsqueeze(0)
|
181 |
+
prediction_map = self.baselines.generate_cam_attn(
|
182 |
+
image.to(self.device)
|
183 |
+
).reshape(1, 1, 14, 14)
|
184 |
+
# Rescale the prediction map to 64x64
|
185 |
+
prediction_map = torch.nn.functional.interpolate(
|
186 |
+
prediction_map,
|
187 |
+
size=(self.width, self.height),
|
188 |
+
mode="nearest"
|
189 |
+
).reshape(1, self.width, self.height)
|
190 |
+
|
191 |
+
return prediction_map, None
|
192 |
+
|
193 |
+
|
194 |
+
class CheferTransformerAttributionSegmentationModel(SegmentationAbstractClass):
|
195 |
+
|
196 |
+
def __init__(self, device: str = "cuda", width: int = 224, height: int = 224):
|
197 |
+
super(CheferTransformerAttributionSegmentationModel, self).__init__()
|
198 |
+
self.width = width
|
199 |
+
self.height = height
|
200 |
+
self.device = device
|
201 |
+
model_LRP = vit_LRP(pretrained=True).to(device)
|
202 |
+
model_LRP.eval()
|
203 |
+
self.lrp = LRP(model_LRP)
|
204 |
+
|
205 |
+
def segment_individual_image(self, image: torch.Tensor, concepts: list[str], caption: str, **kwargs):
|
206 |
+
if len(image.shape) == 3:
|
207 |
+
image = image.unsqueeze(0)
|
208 |
+
prediction_map = self.lrp.generate_LRP(
|
209 |
+
image.to(self.device), start_layer=1, method="transformer_attribution"
|
210 |
+
).reshape(1, 1, 14, 14)
|
211 |
+
# Rescale the prediction map to 64x64
|
212 |
+
prediction_map = torch.nn.functional.interpolate(
|
213 |
+
prediction_map,
|
214 |
+
size=(self.width, self.height),
|
215 |
+
mode="nearest"
|
216 |
+
).reshape(1, self.width, self.height)
|
217 |
+
|
218 |
+
return prediction_map, None
|
219 |
+
|
220 |
+
|
221 |
+
class CheferFullLRPSegmentationModel(SegmentationAbstractClass):
|
222 |
+
|
223 |
+
def __init__(self, device: str = "cuda", width: int = 224, height: int = 224):
|
224 |
+
super(CheferFullLRPSegmentationModel, self).__init__()
|
225 |
+
self.width = width
|
226 |
+
self.height = height
|
227 |
+
self.device = device
|
228 |
+
model_LRP = vit_LRP(pretrained=True).to(device)
|
229 |
+
model_LRP.eval()
|
230 |
+
self.lrp = LRP(model_LRP)
|
231 |
+
|
232 |
+
def segment_individual_image(self, image: torch.Tensor, concepts: list[str], caption: str, **kwargs):
|
233 |
+
if len(image.shape) == 3:
|
234 |
+
image = image.unsqueeze(0)
|
235 |
+
prediction_map = self.lrp.generate_LRP(
|
236 |
+
image.to(self.device), method="full"
|
237 |
+
).reshape(1, 1, 224, 224)
|
238 |
+
# Rescale the prediction map to 64x64
|
239 |
+
prediction_map = torch.nn.functional.interpolate(
|
240 |
+
prediction_map,
|
241 |
+
size=(self.width, self.height),
|
242 |
+
mode="nearest"
|
243 |
+
).reshape(1, self.width, self.height)
|
244 |
+
|
245 |
+
return prediction_map, None
|
246 |
+
|
247 |
+
|
248 |
+
class CheferLastLayerLRPSegmentationModel(SegmentationAbstractClass):
|
249 |
+
|
250 |
+
def __init__(self, device: str = "cuda", width: int = 224, height: int = 224):
|
251 |
+
super(CheferLastLayerLRPSegmentationModel, self).__init__()
|
252 |
+
self.width = width
|
253 |
+
self.height = height
|
254 |
+
self.device = device
|
255 |
+
model_LRP = vit_LRP(pretrained=True).to(device)
|
256 |
+
model_LRP.eval()
|
257 |
+
self.lrp = LRP(model_LRP)
|
258 |
+
|
259 |
+
def segment_individual_image(self, image: torch.Tensor, concepts: list[str], caption: str, **kwargs):
|
260 |
+
if len(image.shape) == 3:
|
261 |
+
image = image.unsqueeze(0)
|
262 |
+
prediction_map = self.lrp.generate_LRP(
|
263 |
+
image.to(self.device), method="last_layer"
|
264 |
+
).reshape(1, 1, 14, 14)
|
265 |
+
# Rescale the prediction map to 64x64
|
266 |
+
prediction_map = torch.nn.functional.interpolate(
|
267 |
+
prediction_map,
|
268 |
+
size=(self.width, self.height),
|
269 |
+
mode="nearest"
|
270 |
+
).reshape(1, self.width, self.height)
|
271 |
+
|
272 |
+
return prediction_map, None
|
concept_attention/binary_segmentation_baselines/chefer_vit_explainability/ViT_LRP.py
ADDED
@@ -0,0 +1,437 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Vision Transformer (ViT) in PyTorch
|
2 |
+
Hacked together by / Copyright 2020 Ross Wightman
|
3 |
+
"""
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from einops import rearrange
|
7 |
+
|
8 |
+
from concept_attention.binary_segmentation_baselines.chefer_vit_explainability.modules.layers_ours import *
|
9 |
+
from concept_attention.binary_segmentation_baselines.chefer_vit_explainability.helpers import load_pretrained
|
10 |
+
from concept_attention.binary_segmentation_baselines.chefer_vit_explainability.weight_init import trunc_normal_
|
11 |
+
from concept_attention.binary_segmentation_baselines.chefer_vit_explainability.layer_helpers import to_2tuple
|
12 |
+
|
13 |
+
|
14 |
+
def _cfg(url='', **kwargs):
|
15 |
+
return {
|
16 |
+
'url': url,
|
17 |
+
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
|
18 |
+
'crop_pct': .9, 'interpolation': 'bicubic',
|
19 |
+
'first_conv': 'patch_embed.proj', 'classifier': 'head',
|
20 |
+
**kwargs
|
21 |
+
}
|
22 |
+
|
23 |
+
|
24 |
+
default_cfgs = {
|
25 |
+
# patch models
|
26 |
+
'vit_small_patch16_224': _cfg(
|
27 |
+
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/vit_small_p16_224-15ec54c9.pth',
|
28 |
+
),
|
29 |
+
'vit_base_patch16_224': _cfg(
|
30 |
+
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth',
|
31 |
+
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
|
32 |
+
),
|
33 |
+
'vit_large_patch16_224': _cfg(
|
34 |
+
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_224-4ee7a4dc.pth',
|
35 |
+
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
|
36 |
+
}
|
37 |
+
|
38 |
+
def compute_rollout_attention(all_layer_matrices, start_layer=0):
|
39 |
+
# adding residual consideration
|
40 |
+
num_tokens = all_layer_matrices[0].shape[1]
|
41 |
+
batch_size = all_layer_matrices[0].shape[0]
|
42 |
+
eye = torch.eye(num_tokens).expand(batch_size, num_tokens, num_tokens).to(all_layer_matrices[0].device)
|
43 |
+
all_layer_matrices = [all_layer_matrices[i] + eye for i in range(len(all_layer_matrices))]
|
44 |
+
# all_layer_matrices = [all_layer_matrices[i] / all_layer_matrices[i].sum(dim=-1, keepdim=True)
|
45 |
+
# for i in range(len(all_layer_matrices))]
|
46 |
+
joint_attention = all_layer_matrices[start_layer]
|
47 |
+
for i in range(start_layer+1, len(all_layer_matrices)):
|
48 |
+
joint_attention = all_layer_matrices[i].bmm(joint_attention)
|
49 |
+
return joint_attention
|
50 |
+
|
51 |
+
class Mlp(nn.Module):
|
52 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, drop=0.):
|
53 |
+
super().__init__()
|
54 |
+
out_features = out_features or in_features
|
55 |
+
hidden_features = hidden_features or in_features
|
56 |
+
self.fc1 = Linear(in_features, hidden_features)
|
57 |
+
self.act = GELU()
|
58 |
+
self.fc2 = Linear(hidden_features, out_features)
|
59 |
+
self.drop = Dropout(drop)
|
60 |
+
|
61 |
+
def forward(self, x):
|
62 |
+
x = self.fc1(x)
|
63 |
+
x = self.act(x)
|
64 |
+
x = self.drop(x)
|
65 |
+
x = self.fc2(x)
|
66 |
+
x = self.drop(x)
|
67 |
+
return x
|
68 |
+
|
69 |
+
def relprop(self, cam, **kwargs):
|
70 |
+
cam = self.drop.relprop(cam, **kwargs)
|
71 |
+
cam = self.fc2.relprop(cam, **kwargs)
|
72 |
+
cam = self.act.relprop(cam, **kwargs)
|
73 |
+
cam = self.fc1.relprop(cam, **kwargs)
|
74 |
+
return cam
|
75 |
+
|
76 |
+
|
77 |
+
class Attention(nn.Module):
|
78 |
+
def __init__(self, dim, num_heads=8, qkv_bias=False,attn_drop=0., proj_drop=0.):
|
79 |
+
super().__init__()
|
80 |
+
self.num_heads = num_heads
|
81 |
+
head_dim = dim // num_heads
|
82 |
+
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
|
83 |
+
self.scale = head_dim ** -0.5
|
84 |
+
|
85 |
+
# A = Q*K^T
|
86 |
+
self.matmul1 = einsum('bhid,bhjd->bhij')
|
87 |
+
# attn = A*V
|
88 |
+
self.matmul2 = einsum('bhij,bhjd->bhid')
|
89 |
+
|
90 |
+
self.qkv = Linear(dim, dim * 3, bias=qkv_bias)
|
91 |
+
self.attn_drop = Dropout(attn_drop)
|
92 |
+
self.proj = Linear(dim, dim)
|
93 |
+
self.proj_drop = Dropout(proj_drop)
|
94 |
+
self.softmax = Softmax(dim=-1)
|
95 |
+
|
96 |
+
self.attn_cam = None
|
97 |
+
self.attn = None
|
98 |
+
self.v = None
|
99 |
+
self.v_cam = None
|
100 |
+
self.attn_gradients = None
|
101 |
+
|
102 |
+
def get_attn(self):
|
103 |
+
return self.attn
|
104 |
+
|
105 |
+
def save_attn(self, attn):
|
106 |
+
self.attn = attn
|
107 |
+
|
108 |
+
def save_attn_cam(self, cam):
|
109 |
+
self.attn_cam = cam
|
110 |
+
|
111 |
+
def get_attn_cam(self):
|
112 |
+
return self.attn_cam
|
113 |
+
|
114 |
+
def get_v(self):
|
115 |
+
return self.v
|
116 |
+
|
117 |
+
def save_v(self, v):
|
118 |
+
self.v = v
|
119 |
+
|
120 |
+
def save_v_cam(self, cam):
|
121 |
+
self.v_cam = cam
|
122 |
+
|
123 |
+
def get_v_cam(self):
|
124 |
+
return self.v_cam
|
125 |
+
|
126 |
+
def save_attn_gradients(self, attn_gradients):
|
127 |
+
self.attn_gradients = attn_gradients
|
128 |
+
|
129 |
+
def get_attn_gradients(self):
|
130 |
+
return self.attn_gradients
|
131 |
+
|
132 |
+
def forward(self, x):
|
133 |
+
b, n, _, h = *x.shape, self.num_heads
|
134 |
+
qkv = self.qkv(x)
|
135 |
+
q, k, v = rearrange(qkv, 'b n (qkv h d) -> qkv b h n d', qkv=3, h=h)
|
136 |
+
|
137 |
+
self.save_v(v)
|
138 |
+
|
139 |
+
dots = self.matmul1([q, k]) * self.scale
|
140 |
+
|
141 |
+
attn = self.softmax(dots)
|
142 |
+
attn = self.attn_drop(attn)
|
143 |
+
|
144 |
+
self.save_attn(attn)
|
145 |
+
attn.register_hook(self.save_attn_gradients)
|
146 |
+
|
147 |
+
out = self.matmul2([attn, v])
|
148 |
+
out = rearrange(out, 'b h n d -> b n (h d)')
|
149 |
+
|
150 |
+
out = self.proj(out)
|
151 |
+
out = self.proj_drop(out)
|
152 |
+
return out
|
153 |
+
|
154 |
+
def relprop(self, cam, **kwargs):
|
155 |
+
cam = self.proj_drop.relprop(cam, **kwargs)
|
156 |
+
cam = self.proj.relprop(cam, **kwargs)
|
157 |
+
cam = rearrange(cam, 'b n (h d) -> b h n d', h=self.num_heads)
|
158 |
+
|
159 |
+
# attn = A*V
|
160 |
+
(cam1, cam_v)= self.matmul2.relprop(cam, **kwargs)
|
161 |
+
cam1 /= 2
|
162 |
+
cam_v /= 2
|
163 |
+
|
164 |
+
self.save_v_cam(cam_v)
|
165 |
+
self.save_attn_cam(cam1)
|
166 |
+
|
167 |
+
cam1 = self.attn_drop.relprop(cam1, **kwargs)
|
168 |
+
cam1 = self.softmax.relprop(cam1, **kwargs)
|
169 |
+
|
170 |
+
# A = Q*K^T
|
171 |
+
(cam_q, cam_k) = self.matmul1.relprop(cam1, **kwargs)
|
172 |
+
cam_q /= 2
|
173 |
+
cam_k /= 2
|
174 |
+
|
175 |
+
cam_qkv = rearrange([cam_q, cam_k, cam_v], 'qkv b h n d -> b n (qkv h d)', qkv=3, h=self.num_heads)
|
176 |
+
|
177 |
+
return self.qkv.relprop(cam_qkv, **kwargs)
|
178 |
+
|
179 |
+
|
180 |
+
class Block(nn.Module):
|
181 |
+
|
182 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.):
|
183 |
+
super().__init__()
|
184 |
+
self.norm1 = LayerNorm(dim, eps=1e-6)
|
185 |
+
self.attn = Attention(
|
186 |
+
dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
|
187 |
+
self.norm2 = LayerNorm(dim, eps=1e-6)
|
188 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
189 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, drop=drop)
|
190 |
+
|
191 |
+
self.add1 = Add()
|
192 |
+
self.add2 = Add()
|
193 |
+
self.clone1 = Clone()
|
194 |
+
self.clone2 = Clone()
|
195 |
+
|
196 |
+
def forward(self, x):
|
197 |
+
x1, x2 = self.clone1(x, 2)
|
198 |
+
x = self.add1([x1, self.attn(self.norm1(x2))])
|
199 |
+
x1, x2 = self.clone2(x, 2)
|
200 |
+
x = self.add2([x1, self.mlp(self.norm2(x2))])
|
201 |
+
return x
|
202 |
+
|
203 |
+
def relprop(self, cam, **kwargs):
|
204 |
+
(cam1, cam2) = self.add2.relprop(cam, **kwargs)
|
205 |
+
cam2 = self.mlp.relprop(cam2, **kwargs)
|
206 |
+
cam2 = self.norm2.relprop(cam2, **kwargs)
|
207 |
+
cam = self.clone2.relprop((cam1, cam2), **kwargs)
|
208 |
+
|
209 |
+
(cam1, cam2) = self.add1.relprop(cam, **kwargs)
|
210 |
+
cam2 = self.attn.relprop(cam2, **kwargs)
|
211 |
+
cam2 = self.norm1.relprop(cam2, **kwargs)
|
212 |
+
cam = self.clone1.relprop((cam1, cam2), **kwargs)
|
213 |
+
return cam
|
214 |
+
|
215 |
+
|
216 |
+
class PatchEmbed(nn.Module):
|
217 |
+
""" Image to Patch Embedding
|
218 |
+
"""
|
219 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
|
220 |
+
super().__init__()
|
221 |
+
img_size = to_2tuple(img_size)
|
222 |
+
patch_size = to_2tuple(patch_size)
|
223 |
+
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
|
224 |
+
self.img_size = img_size
|
225 |
+
self.patch_size = patch_size
|
226 |
+
self.num_patches = num_patches
|
227 |
+
|
228 |
+
self.proj = Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
229 |
+
|
230 |
+
def forward(self, x):
|
231 |
+
B, C, H, W = x.shape
|
232 |
+
# FIXME look at relaxing size constraints
|
233 |
+
assert H == self.img_size[0] and W == self.img_size[1], \
|
234 |
+
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
235 |
+
x = self.proj(x).flatten(2).transpose(1, 2)
|
236 |
+
return x
|
237 |
+
|
238 |
+
def relprop(self, cam, **kwargs):
|
239 |
+
cam = cam.transpose(1,2)
|
240 |
+
cam = cam.reshape(cam.shape[0], cam.shape[1],
|
241 |
+
(self.img_size[0] // self.patch_size[0]), (self.img_size[1] // self.patch_size[1]))
|
242 |
+
return self.proj.relprop(cam, **kwargs)
|
243 |
+
|
244 |
+
|
245 |
+
class VisionTransformer(nn.Module):
|
246 |
+
""" Vision Transformer with support for patch or hybrid CNN input stage
|
247 |
+
"""
|
248 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
|
249 |
+
num_heads=12, mlp_ratio=4., qkv_bias=False, mlp_head=False, drop_rate=0., attn_drop_rate=0.):
|
250 |
+
super().__init__()
|
251 |
+
self.num_classes = num_classes
|
252 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
253 |
+
self.patch_embed = PatchEmbed(
|
254 |
+
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
255 |
+
num_patches = self.patch_embed.num_patches
|
256 |
+
|
257 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
|
258 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
259 |
+
|
260 |
+
self.blocks = nn.ModuleList([
|
261 |
+
Block(
|
262 |
+
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias,
|
263 |
+
drop=drop_rate, attn_drop=attn_drop_rate)
|
264 |
+
for i in range(depth)])
|
265 |
+
|
266 |
+
self.norm = LayerNorm(embed_dim)
|
267 |
+
if mlp_head:
|
268 |
+
# paper diagram suggests 'MLP head', but results in 4M extra parameters vs paper
|
269 |
+
self.head = Mlp(embed_dim, int(embed_dim * mlp_ratio), num_classes)
|
270 |
+
else:
|
271 |
+
# with a single Linear layer as head, the param count within rounding of paper
|
272 |
+
self.head = Linear(embed_dim, num_classes)
|
273 |
+
|
274 |
+
# FIXME not quite sure what the proper weight init is supposed to be,
|
275 |
+
# normal / trunc normal w/ std == .02 similar to other Bert like transformers
|
276 |
+
trunc_normal_(self.pos_embed, std=.02) # embeddings same as weights?
|
277 |
+
trunc_normal_(self.cls_token, std=.02)
|
278 |
+
self.apply(self._init_weights)
|
279 |
+
|
280 |
+
self.pool = IndexSelect()
|
281 |
+
self.add = Add()
|
282 |
+
|
283 |
+
self.inp_grad = None
|
284 |
+
|
285 |
+
def save_inp_grad(self,grad):
|
286 |
+
self.inp_grad = grad
|
287 |
+
|
288 |
+
def get_inp_grad(self):
|
289 |
+
return self.inp_grad
|
290 |
+
|
291 |
+
|
292 |
+
def _init_weights(self, m):
|
293 |
+
if isinstance(m, nn.Linear):
|
294 |
+
trunc_normal_(m.weight, std=.02)
|
295 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
296 |
+
nn.init.constant_(m.bias, 0)
|
297 |
+
elif isinstance(m, nn.LayerNorm):
|
298 |
+
nn.init.constant_(m.bias, 0)
|
299 |
+
nn.init.constant_(m.weight, 1.0)
|
300 |
+
|
301 |
+
@property
|
302 |
+
def no_weight_decay(self):
|
303 |
+
return {'pos_embed', 'cls_token'}
|
304 |
+
|
305 |
+
def forward(self, x):
|
306 |
+
B = x.shape[0]
|
307 |
+
x = self.patch_embed(x)
|
308 |
+
|
309 |
+
cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
310 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
311 |
+
x = self.add([x, self.pos_embed])
|
312 |
+
|
313 |
+
x.register_hook(self.save_inp_grad)
|
314 |
+
|
315 |
+
for blk in self.blocks:
|
316 |
+
x = blk(x)
|
317 |
+
|
318 |
+
x = self.norm(x)
|
319 |
+
x = self.pool(x, dim=1, indices=torch.tensor(0, device=x.device))
|
320 |
+
x = x.squeeze(1)
|
321 |
+
x = self.head(x)
|
322 |
+
return x
|
323 |
+
|
324 |
+
def relprop(self, cam=None,method="transformer_attribution", is_ablation=False, start_layer=0, **kwargs):
|
325 |
+
# print(kwargs)
|
326 |
+
# print("conservation 1", cam.sum())
|
327 |
+
cam = self.head.relprop(cam, **kwargs)
|
328 |
+
cam = cam.unsqueeze(1)
|
329 |
+
cam = self.pool.relprop(cam, **kwargs)
|
330 |
+
cam = self.norm.relprop(cam, **kwargs)
|
331 |
+
for blk in reversed(self.blocks):
|
332 |
+
cam = blk.relprop(cam, **kwargs)
|
333 |
+
|
334 |
+
# print("conservation 2", cam.sum())
|
335 |
+
# print("min", cam.min())
|
336 |
+
|
337 |
+
if method == "full":
|
338 |
+
(cam, _) = self.add.relprop(cam, **kwargs)
|
339 |
+
cam = cam[:, 1:]
|
340 |
+
cam = self.patch_embed.relprop(cam, **kwargs)
|
341 |
+
# sum on channels
|
342 |
+
cam = cam.sum(dim=1)
|
343 |
+
return cam
|
344 |
+
|
345 |
+
elif method == "rollout":
|
346 |
+
# cam rollout
|
347 |
+
attn_cams = []
|
348 |
+
for blk in self.blocks:
|
349 |
+
attn_heads = blk.attn.get_attn_cam().clamp(min=0)
|
350 |
+
avg_heads = (attn_heads.sum(dim=1) / attn_heads.shape[1]).detach()
|
351 |
+
attn_cams.append(avg_heads)
|
352 |
+
cam = compute_rollout_attention(attn_cams, start_layer=start_layer)
|
353 |
+
cam = cam[:, 0, 1:]
|
354 |
+
return cam
|
355 |
+
|
356 |
+
# our method, method name grad is legacy
|
357 |
+
elif method == "transformer_attribution" or method == "grad":
|
358 |
+
cams = []
|
359 |
+
for blk in self.blocks:
|
360 |
+
grad = blk.attn.get_attn_gradients()
|
361 |
+
cam = blk.attn.get_attn_cam()
|
362 |
+
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1])
|
363 |
+
grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1])
|
364 |
+
cam = grad * cam
|
365 |
+
cam = cam.clamp(min=0).mean(dim=0)
|
366 |
+
cams.append(cam.unsqueeze(0))
|
367 |
+
rollout = compute_rollout_attention(cams, start_layer=start_layer)
|
368 |
+
cam = rollout[:, 0, 1:]
|
369 |
+
return cam
|
370 |
+
|
371 |
+
elif method == "last_layer":
|
372 |
+
cam = self.blocks[-1].attn.get_attn_cam()
|
373 |
+
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1])
|
374 |
+
if is_ablation:
|
375 |
+
grad = self.blocks[-1].attn.get_attn_gradients()
|
376 |
+
grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1])
|
377 |
+
cam = grad * cam
|
378 |
+
cam = cam.clamp(min=0).mean(dim=0)
|
379 |
+
cam = cam[0, 1:]
|
380 |
+
return cam
|
381 |
+
|
382 |
+
elif method == "last_layer_attn":
|
383 |
+
cam = self.blocks[-1].attn.get_attn()
|
384 |
+
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1])
|
385 |
+
cam = cam.clamp(min=0).mean(dim=0)
|
386 |
+
cam = cam[0, 1:]
|
387 |
+
return cam
|
388 |
+
|
389 |
+
elif method == "second_layer":
|
390 |
+
cam = self.blocks[1].attn.get_attn_cam()
|
391 |
+
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1])
|
392 |
+
if is_ablation:
|
393 |
+
grad = self.blocks[1].attn.get_attn_gradients()
|
394 |
+
grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1])
|
395 |
+
cam = grad * cam
|
396 |
+
cam = cam.clamp(min=0).mean(dim=0)
|
397 |
+
cam = cam[0, 1:]
|
398 |
+
return cam
|
399 |
+
|
400 |
+
|
401 |
+
def _conv_filter(state_dict, patch_size=16):
|
402 |
+
""" convert patch embedding weight from manual patchify + linear proj to conv"""
|
403 |
+
out_dict = {}
|
404 |
+
for k, v in state_dict.items():
|
405 |
+
if 'patch_embed.proj.weight' in k:
|
406 |
+
v = v.reshape((v.shape[0], 3, patch_size, patch_size))
|
407 |
+
out_dict[k] = v
|
408 |
+
return out_dict
|
409 |
+
|
410 |
+
def vit_base_patch16_224(pretrained=False, **kwargs):
|
411 |
+
model = VisionTransformer(
|
412 |
+
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, **kwargs)
|
413 |
+
model.default_cfg = default_cfgs['vit_base_patch16_224']
|
414 |
+
if pretrained:
|
415 |
+
load_pretrained(
|
416 |
+
model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3), filter_fn=_conv_filter)
|
417 |
+
return model
|
418 |
+
|
419 |
+
def vit_large_patch16_224(pretrained=False, **kwargs):
|
420 |
+
model = VisionTransformer(
|
421 |
+
patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, **kwargs)
|
422 |
+
model.default_cfg = default_cfgs['vit_large_patch16_224']
|
423 |
+
if pretrained:
|
424 |
+
load_pretrained(model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3))
|
425 |
+
return model
|
426 |
+
|
427 |
+
def deit_base_patch16_224(pretrained=False, **kwargs):
|
428 |
+
model = VisionTransformer(
|
429 |
+
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, **kwargs)
|
430 |
+
model.default_cfg = _cfg()
|
431 |
+
if pretrained:
|
432 |
+
checkpoint = torch.hub.load_state_dict_from_url(
|
433 |
+
url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth",
|
434 |
+
map_location="cpu", check_hash=True
|
435 |
+
)
|
436 |
+
model.load_state_dict(checkpoint["model"])
|
437 |
+
return model
|
concept_attention/binary_segmentation_baselines/chefer_vit_explainability/ViT_explanation_generator.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from numpy import *
|
5 |
+
|
6 |
+
# compute rollout between attention layers
|
7 |
+
def compute_rollout_attention(all_layer_matrices, start_layer=0):
|
8 |
+
# adding residual consideration- code adapted from https://github.com/samiraabnar/attention_flow
|
9 |
+
num_tokens = all_layer_matrices[0].shape[1]
|
10 |
+
batch_size = all_layer_matrices[0].shape[0]
|
11 |
+
eye = torch.eye(num_tokens).expand(batch_size, num_tokens, num_tokens).to(all_layer_matrices[0].device)
|
12 |
+
all_layer_matrices = [all_layer_matrices[i] + eye for i in range(len(all_layer_matrices))]
|
13 |
+
matrices_aug = [all_layer_matrices[i] / all_layer_matrices[i].sum(dim=-1, keepdim=True)
|
14 |
+
for i in range(len(all_layer_matrices))]
|
15 |
+
joint_attention = matrices_aug[start_layer]
|
16 |
+
for i in range(start_layer+1, len(matrices_aug)):
|
17 |
+
joint_attention = matrices_aug[i].bmm(joint_attention)
|
18 |
+
return joint_attention
|
19 |
+
|
20 |
+
class LRP:
|
21 |
+
def __init__(self, model):
|
22 |
+
self.model = model
|
23 |
+
self.model.eval()
|
24 |
+
|
25 |
+
def generate_LRP(self, input, index=None, method="transformer_attribution", is_ablation=False, start_layer=0):
|
26 |
+
output = self.model(input)
|
27 |
+
kwargs = {"alpha": 1}
|
28 |
+
if index == None:
|
29 |
+
index = np.argmax(output.cpu().data.numpy(), axis=-1)
|
30 |
+
|
31 |
+
one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32)
|
32 |
+
one_hot[0, index] = 1
|
33 |
+
one_hot_vector = one_hot
|
34 |
+
one_hot = torch.from_numpy(one_hot).requires_grad_(True)
|
35 |
+
one_hot = torch.sum(one_hot.to(input.device) * output)
|
36 |
+
|
37 |
+
self.model.zero_grad()
|
38 |
+
one_hot.backward(retain_graph=True)
|
39 |
+
|
40 |
+
return self.model.relprop(torch.tensor(one_hot_vector).to(input.device), method=method, is_ablation=is_ablation,
|
41 |
+
start_layer=start_layer, **kwargs)
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
class Baselines:
|
46 |
+
def __init__(self, model):
|
47 |
+
self.model = model
|
48 |
+
self.model.eval()
|
49 |
+
|
50 |
+
def generate_cam_attn(self, input, index=None):
|
51 |
+
output = self.model(input, register_hook=True)
|
52 |
+
if index == None:
|
53 |
+
index = np.argmax(output.cpu().data.numpy())
|
54 |
+
|
55 |
+
one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32)
|
56 |
+
one_hot[0][index] = 1
|
57 |
+
one_hot = torch.from_numpy(one_hot).requires_grad_(True)
|
58 |
+
one_hot = torch.sum(one_hot.to(output.device) * output)
|
59 |
+
|
60 |
+
self.model.zero_grad()
|
61 |
+
one_hot.backward(retain_graph=True)
|
62 |
+
#################### attn
|
63 |
+
grad = self.model.blocks[-1].attn.get_attn_gradients()
|
64 |
+
cam = self.model.blocks[-1].attn.get_attention_map()
|
65 |
+
cam = cam[0, :, 0, 1:].reshape(-1, 14, 14)
|
66 |
+
grad = grad[0, :, 0, 1:].reshape(-1, 14, 14)
|
67 |
+
grad = grad.mean(dim=[1, 2], keepdim=True)
|
68 |
+
cam = (cam * grad).mean(0).clamp(min=0)
|
69 |
+
cam = (cam - cam.min()) / (cam.max() - cam.min())
|
70 |
+
|
71 |
+
return cam
|
72 |
+
#################### attn
|
73 |
+
|
74 |
+
def generate_rollout(self, input, start_layer=0):
|
75 |
+
self.model(input)
|
76 |
+
blocks = self.model.blocks
|
77 |
+
all_layer_attentions = []
|
78 |
+
for blk in blocks:
|
79 |
+
attn_heads = blk.attn.get_attention_map()
|
80 |
+
avg_heads = (attn_heads.sum(dim=1) / attn_heads.shape[1]).detach()
|
81 |
+
all_layer_attentions.append(avg_heads)
|
82 |
+
rollout = compute_rollout_attention(all_layer_attentions, start_layer=start_layer)
|
83 |
+
return rollout[:,0, 1:]
|
concept_attention/binary_segmentation_baselines/chefer_vit_explainability/ViT_new.py
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Vision Transformer (ViT) in PyTorch
|
2 |
+
Hacked together by / Copyright 2020 Ross Wightman
|
3 |
+
"""
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from functools import partial
|
7 |
+
from einops import rearrange
|
8 |
+
|
9 |
+
from concept_attention.binary_segmentation_baselines.chefer_vit_explainability.helpers import load_pretrained
|
10 |
+
from concept_attention.binary_segmentation_baselines.chefer_vit_explainability.weight_init import trunc_normal_
|
11 |
+
from concept_attention.binary_segmentation_baselines.chefer_vit_explainability.layer_helpers import to_2tuple
|
12 |
+
|
13 |
+
|
14 |
+
def _cfg(url='', **kwargs):
|
15 |
+
return {
|
16 |
+
'url': url,
|
17 |
+
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
|
18 |
+
'crop_pct': .9, 'interpolation': 'bicubic',
|
19 |
+
'first_conv': 'patch_embed.proj', 'classifier': 'head',
|
20 |
+
**kwargs
|
21 |
+
}
|
22 |
+
|
23 |
+
|
24 |
+
default_cfgs = {
|
25 |
+
# patch models
|
26 |
+
'vit_small_patch16_224': _cfg(
|
27 |
+
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/vit_small_p16_224-15ec54c9.pth',
|
28 |
+
),
|
29 |
+
'vit_base_patch16_224': _cfg(
|
30 |
+
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth',
|
31 |
+
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
|
32 |
+
),
|
33 |
+
'vit_large_patch16_224': _cfg(
|
34 |
+
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_224-4ee7a4dc.pth',
|
35 |
+
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
|
36 |
+
}
|
37 |
+
|
38 |
+
class Mlp(nn.Module):
|
39 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
40 |
+
super().__init__()
|
41 |
+
out_features = out_features or in_features
|
42 |
+
hidden_features = hidden_features or in_features
|
43 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
44 |
+
self.act = act_layer()
|
45 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
46 |
+
self.drop = nn.Dropout(drop)
|
47 |
+
|
48 |
+
def forward(self, x):
|
49 |
+
x = self.fc1(x)
|
50 |
+
x = self.act(x)
|
51 |
+
x = self.drop(x)
|
52 |
+
x = self.fc2(x)
|
53 |
+
x = self.drop(x)
|
54 |
+
return x
|
55 |
+
|
56 |
+
|
57 |
+
class Attention(nn.Module):
|
58 |
+
def __init__(self, dim, num_heads=8, qkv_bias=False,attn_drop=0., proj_drop=0.):
|
59 |
+
super().__init__()
|
60 |
+
self.num_heads = num_heads
|
61 |
+
head_dim = dim // num_heads
|
62 |
+
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
|
63 |
+
self.scale = head_dim ** -0.5
|
64 |
+
|
65 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
66 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
67 |
+
self.proj = nn.Linear(dim, dim)
|
68 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
69 |
+
|
70 |
+
self.attn_gradients = None
|
71 |
+
self.attention_map = None
|
72 |
+
|
73 |
+
def save_attn_gradients(self, attn_gradients):
|
74 |
+
self.attn_gradients = attn_gradients
|
75 |
+
|
76 |
+
def get_attn_gradients(self):
|
77 |
+
return self.attn_gradients
|
78 |
+
|
79 |
+
def save_attention_map(self, attention_map):
|
80 |
+
self.attention_map = attention_map
|
81 |
+
|
82 |
+
def get_attention_map(self):
|
83 |
+
return self.attention_map
|
84 |
+
|
85 |
+
def forward(self, x, register_hook=False):
|
86 |
+
b, n, _, h = *x.shape, self.num_heads
|
87 |
+
|
88 |
+
# self.save_output(x)
|
89 |
+
# x.register_hook(self.save_output_grad)
|
90 |
+
|
91 |
+
qkv = self.qkv(x)
|
92 |
+
q, k, v = rearrange(qkv, 'b n (qkv h d) -> qkv b h n d', qkv = 3, h = h)
|
93 |
+
|
94 |
+
dots = torch.einsum('bhid,bhjd->bhij', q, k) * self.scale
|
95 |
+
|
96 |
+
attn = dots.softmax(dim=-1)
|
97 |
+
attn = self.attn_drop(attn)
|
98 |
+
|
99 |
+
out = torch.einsum('bhij,bhjd->bhid', attn, v)
|
100 |
+
|
101 |
+
self.save_attention_map(attn)
|
102 |
+
if register_hook:
|
103 |
+
attn.register_hook(self.save_attn_gradients)
|
104 |
+
|
105 |
+
out = rearrange(out, 'b h n d -> b n (h d)')
|
106 |
+
out = self.proj(out)
|
107 |
+
out = self.proj_drop(out)
|
108 |
+
return out
|
109 |
+
|
110 |
+
|
111 |
+
class Block(nn.Module):
|
112 |
+
|
113 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
114 |
+
super().__init__()
|
115 |
+
self.norm1 = norm_layer(dim)
|
116 |
+
self.attn = Attention(
|
117 |
+
dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
|
118 |
+
self.norm2 = norm_layer(dim)
|
119 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
120 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
121 |
+
|
122 |
+
def forward(self, x, register_hook=False):
|
123 |
+
x = x + self.attn(self.norm1(x), register_hook=register_hook)
|
124 |
+
x = x + self.mlp(self.norm2(x))
|
125 |
+
return x
|
126 |
+
|
127 |
+
|
128 |
+
class PatchEmbed(nn.Module):
|
129 |
+
""" Image to Patch Embedding
|
130 |
+
"""
|
131 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
|
132 |
+
super().__init__()
|
133 |
+
img_size = to_2tuple(img_size)
|
134 |
+
patch_size = to_2tuple(patch_size)
|
135 |
+
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
|
136 |
+
self.img_size = img_size
|
137 |
+
self.patch_size = patch_size
|
138 |
+
self.num_patches = num_patches
|
139 |
+
|
140 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
141 |
+
|
142 |
+
def forward(self, x):
|
143 |
+
B, C, H, W = x.shape
|
144 |
+
# FIXME look at relaxing size constraints
|
145 |
+
assert H == self.img_size[0] and W == self.img_size[1], \
|
146 |
+
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
147 |
+
x = self.proj(x).flatten(2).transpose(1, 2)
|
148 |
+
return x
|
149 |
+
|
150 |
+
class VisionTransformer(nn.Module):
|
151 |
+
""" Vision Transformer
|
152 |
+
"""
|
153 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
|
154 |
+
num_heads=12, mlp_ratio=4., qkv_bias=False, drop_rate=0., attn_drop_rate=0., norm_layer=nn.LayerNorm):
|
155 |
+
super().__init__()
|
156 |
+
self.num_classes = num_classes
|
157 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
158 |
+
self.patch_embed = PatchEmbed(
|
159 |
+
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
160 |
+
num_patches = self.patch_embed.num_patches
|
161 |
+
|
162 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
163 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
|
164 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
165 |
+
|
166 |
+
self.blocks = nn.ModuleList([
|
167 |
+
Block(
|
168 |
+
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias,
|
169 |
+
drop=drop_rate, attn_drop=attn_drop_rate, norm_layer=norm_layer)
|
170 |
+
for i in range(depth)])
|
171 |
+
self.norm = norm_layer(embed_dim)
|
172 |
+
|
173 |
+
# Classifier head
|
174 |
+
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
175 |
+
|
176 |
+
trunc_normal_(self.pos_embed, std=.02)
|
177 |
+
trunc_normal_(self.cls_token, std=.02)
|
178 |
+
self.apply(self._init_weights)
|
179 |
+
|
180 |
+
def _init_weights(self, m):
|
181 |
+
if isinstance(m, nn.Linear):
|
182 |
+
trunc_normal_(m.weight, std=.02)
|
183 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
184 |
+
nn.init.constant_(m.bias, 0)
|
185 |
+
elif isinstance(m, nn.LayerNorm):
|
186 |
+
nn.init.constant_(m.bias, 0)
|
187 |
+
nn.init.constant_(m.weight, 1.0)
|
188 |
+
|
189 |
+
@torch.jit.ignore
|
190 |
+
def no_weight_decay(self):
|
191 |
+
return {'pos_embed', 'cls_token'}
|
192 |
+
|
193 |
+
def forward(self, x, register_hook=False):
|
194 |
+
B = x.shape[0]
|
195 |
+
x = self.patch_embed(x)
|
196 |
+
|
197 |
+
cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
198 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
199 |
+
x = x + self.pos_embed
|
200 |
+
x = self.pos_drop(x)
|
201 |
+
|
202 |
+
for blk in self.blocks:
|
203 |
+
x = blk(x, register_hook=register_hook)
|
204 |
+
|
205 |
+
x = self.norm(x)
|
206 |
+
x = x[:, 0]
|
207 |
+
x = self.head(x)
|
208 |
+
return x
|
209 |
+
|
210 |
+
|
211 |
+
def _conv_filter(state_dict, patch_size=16):
|
212 |
+
""" convert patch embedding weight from manual patchify + linear proj to conv"""
|
213 |
+
out_dict = {}
|
214 |
+
for k, v in state_dict.items():
|
215 |
+
if 'patch_embed.proj.weight' in k:
|
216 |
+
v = v.reshape((v.shape[0], 3, patch_size, patch_size))
|
217 |
+
out_dict[k] = v
|
218 |
+
return out_dict
|
219 |
+
|
220 |
+
|
221 |
+
def vit_base_patch16_224(pretrained=False, **kwargs):
|
222 |
+
model = VisionTransformer(
|
223 |
+
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
|
224 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
225 |
+
model.default_cfg = default_cfgs['vit_base_patch16_224']
|
226 |
+
if pretrained:
|
227 |
+
load_pretrained(
|
228 |
+
model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3), filter_fn=_conv_filter)
|
229 |
+
return model
|
230 |
+
|
231 |
+
def vit_large_patch16_224(pretrained=False, **kwargs):
|
232 |
+
model = VisionTransformer(
|
233 |
+
patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
|
234 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
235 |
+
model.default_cfg = default_cfgs['vit_large_patch16_224']
|
236 |
+
if pretrained:
|
237 |
+
load_pretrained(model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3))
|
238 |
+
return model
|
concept_attention/binary_segmentation_baselines/chefer_vit_explainability/ViT_orig_LRP.py
ADDED
@@ -0,0 +1,425 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Vision Transformer (ViT) in PyTorch
|
2 |
+
Hacked together by / Copyright 2020 Ross Wightman
|
3 |
+
"""
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from einops import rearrange
|
7 |
+
|
8 |
+
from concept_attention.binary_segmentation_baselines.chefer_vit_explainability.modules.layers_lrp import *
|
9 |
+
from concept_attention.binary_segmentation_baselines.chefer_vit_explainability.helpers import load_pretrained
|
10 |
+
from concept_attention.binary_segmentation_baselines.chefer_vit_explainability.weight_init import trunc_normal_
|
11 |
+
from concept_attention.binary_segmentation_baselines.chefer_vit_explainability.layer_helpers import to_2tuple
|
12 |
+
|
13 |
+
|
14 |
+
def _cfg(url='', **kwargs):
|
15 |
+
return {
|
16 |
+
'url': url,
|
17 |
+
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
|
18 |
+
'crop_pct': .9, 'interpolation': 'bicubic',
|
19 |
+
'first_conv': 'patch_embed.proj', 'classifier': 'head',
|
20 |
+
**kwargs
|
21 |
+
}
|
22 |
+
|
23 |
+
|
24 |
+
default_cfgs = {
|
25 |
+
# patch models
|
26 |
+
'vit_small_patch16_224': _cfg(
|
27 |
+
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/vit_small_p16_224-15ec54c9.pth',
|
28 |
+
),
|
29 |
+
'vit_base_patch16_224': _cfg(
|
30 |
+
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth',
|
31 |
+
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
|
32 |
+
),
|
33 |
+
'vit_large_patch16_224': _cfg(
|
34 |
+
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_224-4ee7a4dc.pth',
|
35 |
+
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
|
36 |
+
}
|
37 |
+
|
38 |
+
def compute_rollout_attention(all_layer_matrices, start_layer=0):
|
39 |
+
# adding residual consideration
|
40 |
+
num_tokens = all_layer_matrices[0].shape[1]
|
41 |
+
batch_size = all_layer_matrices[0].shape[0]
|
42 |
+
eye = torch.eye(num_tokens).expand(batch_size, num_tokens, num_tokens).to(all_layer_matrices[0].device)
|
43 |
+
all_layer_matrices = [all_layer_matrices[i] + eye for i in range(len(all_layer_matrices))]
|
44 |
+
# all_layer_matrices = [all_layer_matrices[i] / all_layer_matrices[i].sum(dim=-1, keepdim=True)
|
45 |
+
# for i in range(len(all_layer_matrices))]
|
46 |
+
joint_attention = all_layer_matrices[start_layer]
|
47 |
+
for i in range(start_layer+1, len(all_layer_matrices)):
|
48 |
+
joint_attention = all_layer_matrices[i].bmm(joint_attention)
|
49 |
+
return joint_attention
|
50 |
+
|
51 |
+
class Mlp(nn.Module):
|
52 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, drop=0.):
|
53 |
+
super().__init__()
|
54 |
+
out_features = out_features or in_features
|
55 |
+
hidden_features = hidden_features or in_features
|
56 |
+
self.fc1 = Linear(in_features, hidden_features)
|
57 |
+
self.act = GELU()
|
58 |
+
self.fc2 = Linear(hidden_features, out_features)
|
59 |
+
self.drop = Dropout(drop)
|
60 |
+
|
61 |
+
def forward(self, x):
|
62 |
+
x = self.fc1(x)
|
63 |
+
x = self.act(x)
|
64 |
+
x = self.drop(x)
|
65 |
+
x = self.fc2(x)
|
66 |
+
x = self.drop(x)
|
67 |
+
return x
|
68 |
+
|
69 |
+
def relprop(self, cam, **kwargs):
|
70 |
+
cam = self.drop.relprop(cam, **kwargs)
|
71 |
+
cam = self.fc2.relprop(cam, **kwargs)
|
72 |
+
cam = self.act.relprop(cam, **kwargs)
|
73 |
+
cam = self.fc1.relprop(cam, **kwargs)
|
74 |
+
return cam
|
75 |
+
|
76 |
+
|
77 |
+
class Attention(nn.Module):
|
78 |
+
def __init__(self, dim, num_heads=8, qkv_bias=False,attn_drop=0., proj_drop=0.):
|
79 |
+
super().__init__()
|
80 |
+
self.num_heads = num_heads
|
81 |
+
head_dim = dim // num_heads
|
82 |
+
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
|
83 |
+
self.scale = head_dim ** -0.5
|
84 |
+
|
85 |
+
# A = Q*K^T
|
86 |
+
self.matmul1 = einsum('bhid,bhjd->bhij')
|
87 |
+
# attn = A*V
|
88 |
+
self.matmul2 = einsum('bhij,bhjd->bhid')
|
89 |
+
|
90 |
+
self.qkv = Linear(dim, dim * 3, bias=qkv_bias)
|
91 |
+
self.attn_drop = Dropout(attn_drop)
|
92 |
+
self.proj = Linear(dim, dim)
|
93 |
+
self.proj_drop = Dropout(proj_drop)
|
94 |
+
self.softmax = Softmax(dim=-1)
|
95 |
+
|
96 |
+
self.attn_cam = None
|
97 |
+
self.attn = None
|
98 |
+
self.v = None
|
99 |
+
self.v_cam = None
|
100 |
+
self.attn_gradients = None
|
101 |
+
|
102 |
+
def get_attn(self):
|
103 |
+
return self.attn
|
104 |
+
|
105 |
+
def save_attn(self, attn):
|
106 |
+
self.attn = attn
|
107 |
+
|
108 |
+
def save_attn_cam(self, cam):
|
109 |
+
self.attn_cam = cam
|
110 |
+
|
111 |
+
def get_attn_cam(self):
|
112 |
+
return self.attn_cam
|
113 |
+
|
114 |
+
def get_v(self):
|
115 |
+
return self.v
|
116 |
+
|
117 |
+
def save_v(self, v):
|
118 |
+
self.v = v
|
119 |
+
|
120 |
+
def save_v_cam(self, cam):
|
121 |
+
self.v_cam = cam
|
122 |
+
|
123 |
+
def get_v_cam(self):
|
124 |
+
return self.v_cam
|
125 |
+
|
126 |
+
def save_attn_gradients(self, attn_gradients):
|
127 |
+
self.attn_gradients = attn_gradients
|
128 |
+
|
129 |
+
def get_attn_gradients(self):
|
130 |
+
return self.attn_gradients
|
131 |
+
|
132 |
+
def forward(self, x):
|
133 |
+
b, n, _, h = *x.shape, self.num_heads
|
134 |
+
qkv = self.qkv(x)
|
135 |
+
q, k, v = rearrange(qkv, 'b n (qkv h d) -> qkv b h n d', qkv=3, h=h)
|
136 |
+
|
137 |
+
self.save_v(v)
|
138 |
+
|
139 |
+
dots = self.matmul1([q, k]) * self.scale
|
140 |
+
|
141 |
+
attn = self.softmax(dots)
|
142 |
+
attn = self.attn_drop(attn)
|
143 |
+
|
144 |
+
self.save_attn(attn)
|
145 |
+
attn.register_hook(self.save_attn_gradients)
|
146 |
+
|
147 |
+
out = self.matmul2([attn, v])
|
148 |
+
out = rearrange(out, 'b h n d -> b n (h d)')
|
149 |
+
|
150 |
+
out = self.proj(out)
|
151 |
+
out = self.proj_drop(out)
|
152 |
+
return out
|
153 |
+
|
154 |
+
def relprop(self, cam, **kwargs):
|
155 |
+
cam = self.proj_drop.relprop(cam, **kwargs)
|
156 |
+
cam = self.proj.relprop(cam, **kwargs)
|
157 |
+
cam = rearrange(cam, 'b n (h d) -> b h n d', h=self.num_heads)
|
158 |
+
|
159 |
+
# attn = A*V
|
160 |
+
(cam1, cam_v)= self.matmul2.relprop(cam, **kwargs)
|
161 |
+
cam1 /= 2
|
162 |
+
cam_v /= 2
|
163 |
+
|
164 |
+
self.save_v_cam(cam_v)
|
165 |
+
self.save_attn_cam(cam1)
|
166 |
+
|
167 |
+
cam1 = self.attn_drop.relprop(cam1, **kwargs)
|
168 |
+
cam1 = self.softmax.relprop(cam1, **kwargs)
|
169 |
+
|
170 |
+
# A = Q*K^T
|
171 |
+
(cam_q, cam_k) = self.matmul1.relprop(cam1, **kwargs)
|
172 |
+
cam_q /= 2
|
173 |
+
cam_k /= 2
|
174 |
+
|
175 |
+
cam_qkv = rearrange([cam_q, cam_k, cam_v], 'qkv b h n d -> b n (qkv h d)', qkv=3, h=self.num_heads)
|
176 |
+
|
177 |
+
return self.qkv.relprop(cam_qkv, **kwargs)
|
178 |
+
|
179 |
+
|
180 |
+
class Block(nn.Module):
|
181 |
+
|
182 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.):
|
183 |
+
super().__init__()
|
184 |
+
self.norm1 = LayerNorm(dim, eps=1e-6)
|
185 |
+
self.attn = Attention(
|
186 |
+
dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
|
187 |
+
self.norm2 = LayerNorm(dim, eps=1e-6)
|
188 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
189 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, drop=drop)
|
190 |
+
|
191 |
+
self.add1 = Add()
|
192 |
+
self.add2 = Add()
|
193 |
+
self.clone1 = Clone()
|
194 |
+
self.clone2 = Clone()
|
195 |
+
|
196 |
+
def forward(self, x):
|
197 |
+
x1, x2 = self.clone1(x, 2)
|
198 |
+
x = self.add1([x1, self.attn(self.norm1(x2))])
|
199 |
+
x1, x2 = self.clone2(x, 2)
|
200 |
+
x = self.add2([x1, self.mlp(self.norm2(x2))])
|
201 |
+
return x
|
202 |
+
|
203 |
+
def relprop(self, cam, **kwargs):
|
204 |
+
(cam1, cam2) = self.add2.relprop(cam, **kwargs)
|
205 |
+
cam2 = self.mlp.relprop(cam2, **kwargs)
|
206 |
+
cam2 = self.norm2.relprop(cam2, **kwargs)
|
207 |
+
cam = self.clone2.relprop((cam1, cam2), **kwargs)
|
208 |
+
|
209 |
+
(cam1, cam2) = self.add1.relprop(cam, **kwargs)
|
210 |
+
cam2 = self.attn.relprop(cam2, **kwargs)
|
211 |
+
cam2 = self.norm1.relprop(cam2, **kwargs)
|
212 |
+
cam = self.clone1.relprop((cam1, cam2), **kwargs)
|
213 |
+
return cam
|
214 |
+
|
215 |
+
|
216 |
+
class PatchEmbed(nn.Module):
|
217 |
+
""" Image to Patch Embedding
|
218 |
+
"""
|
219 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
|
220 |
+
super().__init__()
|
221 |
+
img_size = to_2tuple(img_size)
|
222 |
+
patch_size = to_2tuple(patch_size)
|
223 |
+
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
|
224 |
+
self.img_size = img_size
|
225 |
+
self.patch_size = patch_size
|
226 |
+
self.num_patches = num_patches
|
227 |
+
|
228 |
+
self.proj = Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
229 |
+
|
230 |
+
def forward(self, x):
|
231 |
+
B, C, H, W = x.shape
|
232 |
+
# FIXME look at relaxing size constraints
|
233 |
+
assert H == self.img_size[0] and W == self.img_size[1], \
|
234 |
+
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
235 |
+
x = self.proj(x).flatten(2).transpose(1, 2)
|
236 |
+
return x
|
237 |
+
|
238 |
+
def relprop(self, cam, **kwargs):
|
239 |
+
cam = cam.transpose(1,2)
|
240 |
+
cam = cam.reshape(cam.shape[0], cam.shape[1],
|
241 |
+
(self.img_size[0] // self.patch_size[0]), (self.img_size[1] // self.patch_size[1]))
|
242 |
+
return self.proj.relprop(cam, **kwargs)
|
243 |
+
|
244 |
+
|
245 |
+
class VisionTransformer(nn.Module):
|
246 |
+
""" Vision Transformer with support for patch or hybrid CNN input stage
|
247 |
+
"""
|
248 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
|
249 |
+
num_heads=12, mlp_ratio=4., qkv_bias=False, mlp_head=False, drop_rate=0., attn_drop_rate=0.):
|
250 |
+
super().__init__()
|
251 |
+
self.num_classes = num_classes
|
252 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
253 |
+
self.patch_embed = PatchEmbed(
|
254 |
+
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
255 |
+
num_patches = self.patch_embed.num_patches
|
256 |
+
|
257 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
|
258 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
259 |
+
|
260 |
+
self.blocks = nn.ModuleList([
|
261 |
+
Block(
|
262 |
+
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias,
|
263 |
+
drop=drop_rate, attn_drop=attn_drop_rate)
|
264 |
+
for i in range(depth)])
|
265 |
+
|
266 |
+
self.norm = LayerNorm(embed_dim)
|
267 |
+
if mlp_head:
|
268 |
+
# paper diagram suggests 'MLP head', but results in 4M extra parameters vs paper
|
269 |
+
self.head = Mlp(embed_dim, int(embed_dim * mlp_ratio), num_classes)
|
270 |
+
else:
|
271 |
+
# with a single Linear layer as head, the param count within rounding of paper
|
272 |
+
self.head = Linear(embed_dim, num_classes)
|
273 |
+
|
274 |
+
# FIXME not quite sure what the proper weight init is supposed to be,
|
275 |
+
# normal / trunc normal w/ std == .02 similar to other Bert like transformers
|
276 |
+
trunc_normal_(self.pos_embed, std=.02) # embeddings same as weights?
|
277 |
+
trunc_normal_(self.cls_token, std=.02)
|
278 |
+
self.apply(self._init_weights)
|
279 |
+
|
280 |
+
self.pool = IndexSelect()
|
281 |
+
self.add = Add()
|
282 |
+
|
283 |
+
self.inp_grad = None
|
284 |
+
|
285 |
+
def save_inp_grad(self,grad):
|
286 |
+
self.inp_grad = grad
|
287 |
+
|
288 |
+
def get_inp_grad(self):
|
289 |
+
return self.inp_grad
|
290 |
+
|
291 |
+
|
292 |
+
def _init_weights(self, m):
|
293 |
+
if isinstance(m, nn.Linear):
|
294 |
+
trunc_normal_(m.weight, std=.02)
|
295 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
296 |
+
nn.init.constant_(m.bias, 0)
|
297 |
+
elif isinstance(m, nn.LayerNorm):
|
298 |
+
nn.init.constant_(m.bias, 0)
|
299 |
+
nn.init.constant_(m.weight, 1.0)
|
300 |
+
|
301 |
+
@property
|
302 |
+
def no_weight_decay(self):
|
303 |
+
return {'pos_embed', 'cls_token'}
|
304 |
+
|
305 |
+
def forward(self, x):
|
306 |
+
B = x.shape[0]
|
307 |
+
x = self.patch_embed(x)
|
308 |
+
|
309 |
+
cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
310 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
311 |
+
x = self.add([x, self.pos_embed])
|
312 |
+
|
313 |
+
x.register_hook(self.save_inp_grad)
|
314 |
+
|
315 |
+
for blk in self.blocks:
|
316 |
+
x = blk(x)
|
317 |
+
|
318 |
+
x = self.norm(x)
|
319 |
+
x = self.pool(x, dim=1, indices=torch.tensor(0, device=x.device))
|
320 |
+
x = x.squeeze(1)
|
321 |
+
x = self.head(x)
|
322 |
+
return x
|
323 |
+
|
324 |
+
def relprop(self, cam=None,method="grad", is_ablation=False, start_layer=0, **kwargs):
|
325 |
+
# print(kwargs)
|
326 |
+
# print("conservation 1", cam.sum())
|
327 |
+
cam = self.head.relprop(cam, **kwargs)
|
328 |
+
cam = cam.unsqueeze(1)
|
329 |
+
cam = self.pool.relprop(cam, **kwargs)
|
330 |
+
cam = self.norm.relprop(cam, **kwargs)
|
331 |
+
for blk in reversed(self.blocks):
|
332 |
+
cam = blk.relprop(cam, **kwargs)
|
333 |
+
|
334 |
+
# print("conservation 2", cam.sum())
|
335 |
+
# print("min", cam.min())
|
336 |
+
|
337 |
+
if method == "full":
|
338 |
+
(cam, _) = self.add.relprop(cam, **kwargs)
|
339 |
+
cam = cam[:, 1:]
|
340 |
+
cam = self.patch_embed.relprop(cam, **kwargs)
|
341 |
+
# sum on channels
|
342 |
+
cam = cam.sum(dim=1)
|
343 |
+
return cam
|
344 |
+
|
345 |
+
elif method == "rollout":
|
346 |
+
# cam rollout
|
347 |
+
attn_cams = []
|
348 |
+
for blk in self.blocks:
|
349 |
+
attn_heads = blk.attn.get_attn_cam().clamp(min=0)
|
350 |
+
avg_heads = (attn_heads.sum(dim=1) / attn_heads.shape[1]).detach()
|
351 |
+
attn_cams.append(avg_heads)
|
352 |
+
cam = compute_rollout_attention(attn_cams, start_layer=start_layer)
|
353 |
+
cam = cam[:, 0, 1:]
|
354 |
+
return cam
|
355 |
+
|
356 |
+
elif method == "grad":
|
357 |
+
cams = []
|
358 |
+
for blk in self.blocks:
|
359 |
+
grad = blk.attn.get_attn_gradients()
|
360 |
+
cam = blk.attn.get_attn_cam()
|
361 |
+
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1])
|
362 |
+
grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1])
|
363 |
+
cam = grad * cam
|
364 |
+
cam = cam.clamp(min=0).mean(dim=0)
|
365 |
+
cams.append(cam.unsqueeze(0))
|
366 |
+
rollout = compute_rollout_attention(cams, start_layer=start_layer)
|
367 |
+
cam = rollout[:, 0, 1:]
|
368 |
+
return cam
|
369 |
+
|
370 |
+
elif method == "last_layer":
|
371 |
+
cam = self.blocks[-1].attn.get_attn_cam()
|
372 |
+
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1])
|
373 |
+
if is_ablation:
|
374 |
+
grad = self.blocks[-1].attn.get_attn_gradients()
|
375 |
+
grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1])
|
376 |
+
cam = grad * cam
|
377 |
+
cam = cam.clamp(min=0).mean(dim=0)
|
378 |
+
cam = cam[0, 1:]
|
379 |
+
return cam
|
380 |
+
|
381 |
+
elif method == "last_layer_attn":
|
382 |
+
cam = self.blocks[-1].attn.get_attn()
|
383 |
+
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1])
|
384 |
+
cam = cam.clamp(min=0).mean(dim=0)
|
385 |
+
cam = cam[0, 1:]
|
386 |
+
return cam
|
387 |
+
|
388 |
+
elif method == "second_layer":
|
389 |
+
cam = self.blocks[1].attn.get_attn_cam()
|
390 |
+
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1])
|
391 |
+
if is_ablation:
|
392 |
+
grad = self.blocks[1].attn.get_attn_gradients()
|
393 |
+
grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1])
|
394 |
+
cam = grad * cam
|
395 |
+
cam = cam.clamp(min=0).mean(dim=0)
|
396 |
+
cam = cam[0, 1:]
|
397 |
+
return cam
|
398 |
+
|
399 |
+
|
400 |
+
def _conv_filter(state_dict, patch_size=16):
|
401 |
+
""" convert patch embedding weight from manual patchify + linear proj to conv"""
|
402 |
+
out_dict = {}
|
403 |
+
for k, v in state_dict.items():
|
404 |
+
if 'patch_embed.proj.weight' in k:
|
405 |
+
v = v.reshape((v.shape[0], 3, patch_size, patch_size))
|
406 |
+
out_dict[k] = v
|
407 |
+
return out_dict
|
408 |
+
|
409 |
+
|
410 |
+
def vit_base_patch16_224(pretrained=False, **kwargs):
|
411 |
+
model = VisionTransformer(
|
412 |
+
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, **kwargs)
|
413 |
+
model.default_cfg = default_cfgs['vit_base_patch16_224']
|
414 |
+
if pretrained:
|
415 |
+
load_pretrained(
|
416 |
+
model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3), filter_fn=_conv_filter)
|
417 |
+
return model
|
418 |
+
|
419 |
+
def vit_large_patch16_224(pretrained=False, **kwargs):
|
420 |
+
model = VisionTransformer(
|
421 |
+
patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, **kwargs)
|
422 |
+
model.default_cfg = default_cfgs['vit_large_patch16_224']
|
423 |
+
if pretrained:
|
424 |
+
load_pretrained(model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3))
|
425 |
+
return model
|
concept_attention/binary_segmentation_baselines/chefer_vit_explainability/__pycache__/ViT_LRP.cpython-310.pyc
ADDED
Binary file (14.4 kB). View file
|
|
concept_attention/binary_segmentation_baselines/chefer_vit_explainability/__pycache__/ViT_explanation_generator.cpython-310.pyc
ADDED
Binary file (3.49 kB). View file
|
|
concept_attention/binary_segmentation_baselines/chefer_vit_explainability/__pycache__/ViT_new.cpython-310.pyc
ADDED
Binary file (9.15 kB). View file
|
|
concept_attention/binary_segmentation_baselines/chefer_vit_explainability/__pycache__/ViT_orig_LRP.cpython-310.pyc
ADDED
Binary file (13.9 kB). View file
|
|
concept_attention/binary_segmentation_baselines/chefer_vit_explainability/__pycache__/helpers.cpython-310.pyc
ADDED
Binary file (7.28 kB). View file
|
|
concept_attention/binary_segmentation_baselines/chefer_vit_explainability/__pycache__/layer_helpers.cpython-310.pyc
ADDED
Binary file (810 Bytes). View file
|
|
concept_attention/binary_segmentation_baselines/chefer_vit_explainability/__pycache__/weight_init.cpython-310.pyc
ADDED
Binary file (1.98 kB). View file
|
|
concept_attention/binary_segmentation_baselines/chefer_vit_explainability/data/VOC.py
ADDED
@@ -0,0 +1,395 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import tarfile
|
3 |
+
import torch
|
4 |
+
import torch.utils.data as data
|
5 |
+
import numpy as np
|
6 |
+
import h5py
|
7 |
+
|
8 |
+
from PIL import Image
|
9 |
+
from scipy import io
|
10 |
+
from torchvision.datasets.utils import download_url
|
11 |
+
|
12 |
+
DATASET_YEAR_DICT = {
|
13 |
+
'2012': {
|
14 |
+
'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar',
|
15 |
+
'filename': 'VOCtrainval_11-May-2012.tar',
|
16 |
+
'md5': '6cd6e144f989b92b3379bac3b3de84fd',
|
17 |
+
'base_dir': 'VOCdevkit/VOC2012'
|
18 |
+
},
|
19 |
+
'2011': {
|
20 |
+
'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2011/VOCtrainval_25-May-2011.tar',
|
21 |
+
'filename': 'VOCtrainval_25-May-2011.tar',
|
22 |
+
'md5': '6c3384ef61512963050cb5d687e5bf1e',
|
23 |
+
'base_dir': 'TrainVal/VOCdevkit/VOC2011'
|
24 |
+
},
|
25 |
+
'2010': {
|
26 |
+
'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2010/VOCtrainval_03-May-2010.tar',
|
27 |
+
'filename': 'VOCtrainval_03-May-2010.tar',
|
28 |
+
'md5': 'da459979d0c395079b5c75ee67908abb',
|
29 |
+
'base_dir': 'VOCdevkit/VOC2010'
|
30 |
+
},
|
31 |
+
'2009': {
|
32 |
+
'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2009/VOCtrainval_11-May-2009.tar',
|
33 |
+
'filename': 'VOCtrainval_11-May-2009.tar',
|
34 |
+
'md5': '59065e4b188729180974ef6572f6a212',
|
35 |
+
'base_dir': 'VOCdevkit/VOC2009'
|
36 |
+
},
|
37 |
+
'2008': {
|
38 |
+
'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2008/VOCtrainval_14-Jul-2008.tar',
|
39 |
+
'filename': 'VOCtrainval_11-May-2012.tar',
|
40 |
+
'md5': '2629fa636546599198acfcfbfcf1904a',
|
41 |
+
'base_dir': 'VOCdevkit/VOC2008'
|
42 |
+
},
|
43 |
+
'2007': {
|
44 |
+
'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar',
|
45 |
+
'filename': 'VOCtrainval_06-Nov-2007.tar',
|
46 |
+
'md5': 'c52e279531787c972589f7e41ab4ae64',
|
47 |
+
'base_dir': 'VOCdevkit/VOC2007'
|
48 |
+
}
|
49 |
+
}
|
50 |
+
|
51 |
+
|
52 |
+
class VOCSegmentation(data.Dataset):
|
53 |
+
"""`Pascal VOC <http://host.robots.ox.ac.uk/pascal/VOC/>`_ Segmentation Dataset.
|
54 |
+
|
55 |
+
Args:
|
56 |
+
root (string): Root directory of the VOC Dataset.
|
57 |
+
year (string, optional): The dataset year, supports years 2007 to 2012.
|
58 |
+
image_set (string, optional): Select the image_set to use, ``train``, ``trainval`` or ``val``
|
59 |
+
download (bool, optional): If true, downloads the dataset from the internet and
|
60 |
+
puts it in root directory. If dataset is already downloaded, it is not
|
61 |
+
downloaded again.
|
62 |
+
transform (callable, optional): A function/transform that takes in an PIL image
|
63 |
+
and returns a transformed version. E.g, ``transforms.RandomCrop``
|
64 |
+
target_transform (callable, optional): A function/transform that takes in the
|
65 |
+
target and transforms it.
|
66 |
+
"""
|
67 |
+
|
68 |
+
CLASSES = 20
|
69 |
+
# CLASSES_NAMES = [
|
70 |
+
# "background", 'airplane', 'bicycle', 'bird', 'boat', 'bottle',
|
71 |
+
# 'bus', 'car', 'cat', 'chair', 'cow', 'table', 'dog', 'horse',
|
72 |
+
# 'motorcycle', 'person', 'pot', 'sheep', 'sofa', 'train',
|
73 |
+
# 'monitor'
|
74 |
+
# # 'ambigious'
|
75 |
+
# ]
|
76 |
+
CLASSES_NAMES = [
|
77 |
+
"background", 'plane', 'bike', 'bird', 'boat', 'bottle',
|
78 |
+
'bus', 'car', 'cat', 'chair', 'cow', 'table', 'dog', 'horse',
|
79 |
+
'motorcycle', 'person', 'pot', 'sheep', 'sofa', 'train',
|
80 |
+
'monitor'
|
81 |
+
# 'ambigious'
|
82 |
+
]
|
83 |
+
|
84 |
+
def __init__(
|
85 |
+
self,
|
86 |
+
root,
|
87 |
+
year='2012',
|
88 |
+
image_set='train',
|
89 |
+
download=False,
|
90 |
+
transform=None,
|
91 |
+
target_transform=None,
|
92 |
+
binary_class=False
|
93 |
+
):
|
94 |
+
self.root = os.path.expanduser(root)
|
95 |
+
self.binary_class = binary_class
|
96 |
+
self.year = year
|
97 |
+
self.url = DATASET_YEAR_DICT[year]['url']
|
98 |
+
self.filename = DATASET_YEAR_DICT[year]['filename']
|
99 |
+
self.md5 = DATASET_YEAR_DICT[year]['md5']
|
100 |
+
self.transform = transform
|
101 |
+
self.target_transform = target_transform
|
102 |
+
self.image_set = image_set
|
103 |
+
base_dir = DATASET_YEAR_DICT[year]['base_dir']
|
104 |
+
voc_root = os.path.join(self.root, base_dir)
|
105 |
+
image_dir = os.path.join(voc_root, 'JPEGImages')
|
106 |
+
mask_dir = os.path.join(voc_root, 'SegmentationClass')
|
107 |
+
|
108 |
+
if download:
|
109 |
+
download_extract(self.url, self.root, self.filename, self.md5)
|
110 |
+
|
111 |
+
if not os.path.isdir(voc_root):
|
112 |
+
raise RuntimeError('Dataset not found or corrupted.' +
|
113 |
+
' You can use download=True to download it')
|
114 |
+
|
115 |
+
splits_dir = os.path.join(voc_root, 'ImageSets/Segmentation')
|
116 |
+
|
117 |
+
split_f = os.path.join(splits_dir, image_set.rstrip('\n') + '.txt')
|
118 |
+
|
119 |
+
if not os.path.exists(split_f):
|
120 |
+
raise ValueError(
|
121 |
+
'Wrong image_set entered! Please use image_set="train" '
|
122 |
+
'or image_set="trainval" or image_set="val"')
|
123 |
+
|
124 |
+
with open(os.path.join(split_f), "r") as f:
|
125 |
+
file_names = [x.strip() for x in f.readlines()]
|
126 |
+
|
127 |
+
self.images = [os.path.join(image_dir, x + ".jpg") for x in file_names]
|
128 |
+
self.masks = [os.path.join(mask_dir, x + ".png") for x in file_names]
|
129 |
+
assert (len(self.images) == len(self.masks))
|
130 |
+
|
131 |
+
def __getitem__(self, index):
|
132 |
+
"""
|
133 |
+
Args:
|
134 |
+
index (int): Index
|
135 |
+
|
136 |
+
Returns:
|
137 |
+
tuple: (image, target) where target is the image segmentation.
|
138 |
+
"""
|
139 |
+
img = Image.open(self.images[index]).convert('RGB')
|
140 |
+
target = Image.open(self.masks[index])
|
141 |
+
|
142 |
+
if self.transform is not None:
|
143 |
+
img = self.transform(img)
|
144 |
+
|
145 |
+
if self.target_transform is not None:
|
146 |
+
target = np.array(self.target_transform(target)).astype('int32')
|
147 |
+
target[target == 255] = -1
|
148 |
+
target = torch.from_numpy(target).long()
|
149 |
+
|
150 |
+
# # Convert target to (2, height, width)
|
151 |
+
# target = torch.stack([target, 1 - target], dim=0)
|
152 |
+
# Get a list of the classes that are present in the image
|
153 |
+
visible_classes = np.unique(target)
|
154 |
+
# Convert these to class names
|
155 |
+
present_classes = [self.CLASSES_NAMES[i] for i in visible_classes if i != -1]
|
156 |
+
|
157 |
+
if self.binary_class:
|
158 |
+
# Take all classes that aren't zero or -1 and mkae them 1
|
159 |
+
target[target >= 1] = 1
|
160 |
+
|
161 |
+
return img, target, present_classes
|
162 |
+
|
163 |
+
@staticmethod
|
164 |
+
def _mask_transform(mask):
|
165 |
+
target = np.array(mask).astype('int32')
|
166 |
+
target[target == 255] = -1
|
167 |
+
return torch.from_numpy(target).long()
|
168 |
+
|
169 |
+
def __len__(self):
|
170 |
+
return len(self.images)
|
171 |
+
|
172 |
+
@property
|
173 |
+
def pred_offset(self):
|
174 |
+
return 0
|
175 |
+
|
176 |
+
|
177 |
+
class VOCClassification(data.Dataset):
|
178 |
+
"""`Pascal VOC <http://host.robots.ox.ac.uk/pascal/VOC/>`_ Segmentation Dataset.
|
179 |
+
|
180 |
+
Args:
|
181 |
+
root (string): Root directory of the VOC Dataset.
|
182 |
+
year (string, optional): The dataset year, supports years 2007 to 2012.
|
183 |
+
image_set (string, optional): Select the image_set to use, ``train``, ``trainval`` or ``val``
|
184 |
+
download (bool, optional): If true, downloads the dataset from the internet and
|
185 |
+
puts it in root directory. If dataset is already downloaded, it is not
|
186 |
+
downloaded again.
|
187 |
+
transform (callable, optional): A function/transform that takes in an PIL image
|
188 |
+
and returns a transformed version. E.g, ``transforms.RandomCrop``
|
189 |
+
"""
|
190 |
+
CLASSES = 20
|
191 |
+
|
192 |
+
def __init__(self,
|
193 |
+
root,
|
194 |
+
year='2012',
|
195 |
+
image_set='train',
|
196 |
+
download=False,
|
197 |
+
transform=None):
|
198 |
+
self.root = os.path.expanduser(root)
|
199 |
+
self.year = year
|
200 |
+
self.url = DATASET_YEAR_DICT[year]['url']
|
201 |
+
self.filename = DATASET_YEAR_DICT[year]['filename']
|
202 |
+
self.md5 = DATASET_YEAR_DICT[year]['md5']
|
203 |
+
self.transform = transform
|
204 |
+
self.image_set = image_set
|
205 |
+
base_dir = DATASET_YEAR_DICT[year]['base_dir']
|
206 |
+
voc_root = os.path.join(self.root, base_dir)
|
207 |
+
image_dir = os.path.join(voc_root, 'JPEGImages')
|
208 |
+
mask_dir = os.path.join(voc_root, 'SegmentationClass')
|
209 |
+
|
210 |
+
if download:
|
211 |
+
download_extract(self.url, self.root, self.filename, self.md5)
|
212 |
+
|
213 |
+
if not os.path.isdir(voc_root):
|
214 |
+
raise RuntimeError('Dataset not found or corrupted.' +
|
215 |
+
' You can use download=True to download it')
|
216 |
+
|
217 |
+
splits_dir = os.path.join(voc_root, 'ImageSets/Segmentation')
|
218 |
+
|
219 |
+
split_f = os.path.join(splits_dir, image_set.rstrip('\n') + '.txt')
|
220 |
+
|
221 |
+
if not os.path.exists(split_f):
|
222 |
+
raise ValueError(
|
223 |
+
'Wrong image_set entered! Please use image_set="train" '
|
224 |
+
'or image_set="trainval" or image_set="val"')
|
225 |
+
|
226 |
+
with open(os.path.join(split_f), "r") as f:
|
227 |
+
file_names = [x.strip() for x in f.readlines()]
|
228 |
+
|
229 |
+
self.images = [os.path.join(image_dir, x + ".jpg") for x in file_names]
|
230 |
+
self.masks = [os.path.join(mask_dir, x + ".png") for x in file_names]
|
231 |
+
assert (len(self.images) == len(self.masks))
|
232 |
+
|
233 |
+
def __getitem__(self, index):
|
234 |
+
"""
|
235 |
+
Args:
|
236 |
+
index (int): Index
|
237 |
+
|
238 |
+
Returns:
|
239 |
+
tuple: (image, target) where target is the image segmentation.
|
240 |
+
"""
|
241 |
+
img = Image.open(self.images[index]).convert('RGB')
|
242 |
+
target = Image.open(self.masks[index])
|
243 |
+
|
244 |
+
# if self.transform is not None:
|
245 |
+
# img = self.transform(img)
|
246 |
+
if self.transform is not None:
|
247 |
+
img, target = self.transform(img, target)
|
248 |
+
|
249 |
+
visible_classes = np.unique(target)
|
250 |
+
labels = torch.zeros(self.CLASSES)
|
251 |
+
for id in visible_classes:
|
252 |
+
if id not in (0, 255):
|
253 |
+
labels[id - 1].fill_(1)
|
254 |
+
|
255 |
+
return img, labels
|
256 |
+
|
257 |
+
def __len__(self):
|
258 |
+
return len(self.images)
|
259 |
+
|
260 |
+
|
261 |
+
class VOCSBDClassification(data.Dataset):
|
262 |
+
"""`Pascal VOC <http://host.robots.ox.ac.uk/pascal/VOC/>`_ Segmentation Dataset.
|
263 |
+
|
264 |
+
Args:
|
265 |
+
root (string): Root directory of the VOC Dataset.
|
266 |
+
year (string, optional): The dataset year, supports years 2007 to 2012.
|
267 |
+
image_set (string, optional): Select the image_set to use, ``train``, ``trainval`` or ``val``
|
268 |
+
download (bool, optional): If true, downloads the dataset from the internet and
|
269 |
+
puts it in root directory. If dataset is already downloaded, it is not
|
270 |
+
downloaded again.
|
271 |
+
transform (callable, optional): A function/transform that takes in an PIL image
|
272 |
+
and returns a transformed version. E.g, ``transforms.RandomCrop``
|
273 |
+
"""
|
274 |
+
CLASSES = 20
|
275 |
+
|
276 |
+
def __init__(self,
|
277 |
+
root,
|
278 |
+
sbd_root,
|
279 |
+
year='2012',
|
280 |
+
image_set='train',
|
281 |
+
download=False,
|
282 |
+
transform=None):
|
283 |
+
self.root = os.path.expanduser(root)
|
284 |
+
self.sbd_root = os.path.expanduser(sbd_root)
|
285 |
+
self.year = year
|
286 |
+
self.url = DATASET_YEAR_DICT[year]['url']
|
287 |
+
self.filename = DATASET_YEAR_DICT[year]['filename']
|
288 |
+
self.md5 = DATASET_YEAR_DICT[year]['md5']
|
289 |
+
self.transform = transform
|
290 |
+
self.image_set = image_set
|
291 |
+
base_dir = DATASET_YEAR_DICT[year]['base_dir']
|
292 |
+
voc_root = os.path.join(self.root, base_dir)
|
293 |
+
image_dir = os.path.join(voc_root, 'JPEGImages')
|
294 |
+
mask_dir = os.path.join(voc_root, 'SegmentationClass')
|
295 |
+
sbd_image_dir = os.path.join(sbd_root, 'img')
|
296 |
+
sbd_mask_dir = os.path.join(sbd_root, 'cls')
|
297 |
+
|
298 |
+
if download:
|
299 |
+
download_extract(self.url, self.root, self.filename, self.md5)
|
300 |
+
|
301 |
+
if not os.path.isdir(voc_root):
|
302 |
+
raise RuntimeError('Dataset not found or corrupted.' +
|
303 |
+
' You can use download=True to download it')
|
304 |
+
|
305 |
+
splits_dir = os.path.join(voc_root, 'ImageSets/Segmentation')
|
306 |
+
|
307 |
+
split_f = os.path.join(splits_dir, image_set.rstrip('\n') + '.txt')
|
308 |
+
sbd_split = os.path.join(sbd_root, 'train.txt')
|
309 |
+
|
310 |
+
if not os.path.exists(split_f):
|
311 |
+
raise ValueError(
|
312 |
+
'Wrong image_set entered! Please use image_set="train" '
|
313 |
+
'or image_set="trainval" or image_set="val"')
|
314 |
+
|
315 |
+
with open(os.path.join(split_f), "r") as f:
|
316 |
+
voc_file_names = [x.strip() for x in f.readlines()]
|
317 |
+
|
318 |
+
with open(os.path.join(sbd_split), "r") as f:
|
319 |
+
sbd_file_names = [x.strip() for x in f.readlines()]
|
320 |
+
|
321 |
+
self.images = [os.path.join(image_dir, x + ".jpg") for x in voc_file_names]
|
322 |
+
self.images += [os.path.join(sbd_image_dir, x + ".jpg") for x in sbd_file_names]
|
323 |
+
self.masks = [os.path.join(mask_dir, x + ".png") for x in voc_file_names]
|
324 |
+
self.masks += [os.path.join(sbd_mask_dir, x + ".mat") for x in sbd_file_names]
|
325 |
+
assert (len(self.images) == len(self.masks))
|
326 |
+
|
327 |
+
def __getitem__(self, index):
|
328 |
+
"""
|
329 |
+
Args:
|
330 |
+
index (int): Index
|
331 |
+
|
332 |
+
Returns:
|
333 |
+
tuple: (image, target) where target is the image segmentation.
|
334 |
+
"""
|
335 |
+
img = Image.open(self.images[index]).convert('RGB')
|
336 |
+
mask_path = self.masks[index]
|
337 |
+
if mask_path[-3:] == 'mat':
|
338 |
+
target = io.loadmat(mask_path, struct_as_record=False, squeeze_me=True)['GTcls'].Segmentation
|
339 |
+
target = Image.fromarray(target, mode='P')
|
340 |
+
else:
|
341 |
+
target = Image.open(self.masks[index])
|
342 |
+
|
343 |
+
if self.transform is not None:
|
344 |
+
img, target = self.transform(img, target)
|
345 |
+
|
346 |
+
visible_classes = np.unique(target)
|
347 |
+
labels = torch.zeros(self.CLASSES)
|
348 |
+
for id in visible_classes:
|
349 |
+
if id not in (0, 255):
|
350 |
+
labels[id - 1].fill_(1)
|
351 |
+
|
352 |
+
return img, labels
|
353 |
+
|
354 |
+
def __len__(self):
|
355 |
+
return len(self.images)
|
356 |
+
|
357 |
+
|
358 |
+
def download_extract(url, root, filename, md5):
|
359 |
+
download_url(url, root, filename, md5)
|
360 |
+
with tarfile.open(os.path.join(root, filename), "r") as tar:
|
361 |
+
tar.extractall(path=root)
|
362 |
+
|
363 |
+
|
364 |
+
class VOCResults(data.Dataset):
|
365 |
+
CLASSES = 20
|
366 |
+
CLASSES_NAMES = [
|
367 |
+
'aeroplane', 'bicycle', 'bird', 'boat', 'bottle',
|
368 |
+
'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse',
|
369 |
+
'motorbike', 'person', 'potted-plant', 'sheep', 'sofa', 'train',
|
370 |
+
'tvmonitor', 'ambigious'
|
371 |
+
]
|
372 |
+
|
373 |
+
def __init__(self, path):
|
374 |
+
super(VOCResults, self).__init__()
|
375 |
+
|
376 |
+
self.path = os.path.join(path, 'results.hdf5')
|
377 |
+
self.data = None
|
378 |
+
|
379 |
+
print('Reading dataset length...')
|
380 |
+
with h5py.File(self.path , 'r') as f:
|
381 |
+
self.data_length = len(f['/image'])
|
382 |
+
|
383 |
+
def __len__(self):
|
384 |
+
return self.data_length
|
385 |
+
|
386 |
+
def __getitem__(self, item):
|
387 |
+
if self.data is None:
|
388 |
+
self.data = h5py.File(self.path, 'r')
|
389 |
+
|
390 |
+
image = torch.tensor(self.data['image'][item])
|
391 |
+
vis = torch.tensor(self.data['vis'][item])
|
392 |
+
target = torch.tensor(self.data['target'][item])
|
393 |
+
class_pred = torch.tensor(self.data['class_pred'][item])
|
394 |
+
|
395 |
+
return image, vis, target, class_pred
|
concept_attention/binary_segmentation_baselines/chefer_vit_explainability/data/__init__.py
ADDED
File without changes
|
concept_attention/binary_segmentation_baselines/chefer_vit_explainability/data/__pycache__/Imagenet.cpython-310.pyc
ADDED
Binary file (5.25 kB). View file
|
|
concept_attention/binary_segmentation_baselines/chefer_vit_explainability/data/__pycache__/VOC.cpython-310.pyc
ADDED
Binary file (12.1 kB). View file
|
|
concept_attention/binary_segmentation_baselines/chefer_vit_explainability/data/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (220 Bytes). View file
|
|
concept_attention/binary_segmentation_baselines/chefer_vit_explainability/data/__pycache__/imagenet.cpython-310.pyc
ADDED
Binary file (5.37 kB). View file
|
|
concept_attention/binary_segmentation_baselines/chefer_vit_explainability/data/imagenet.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import torch.utils.data as data
|
4 |
+
import numpy as np
|
5 |
+
import cv2
|
6 |
+
|
7 |
+
from torchvision.datasets import ImageNet
|
8 |
+
|
9 |
+
from PIL import Image, ImageFilter
|
10 |
+
import h5py
|
11 |
+
from glob import glob
|
12 |
+
|
13 |
+
|
14 |
+
class ImageNet_blur(ImageNet):
|
15 |
+
def __getitem__(self, index):
|
16 |
+
"""
|
17 |
+
Args:
|
18 |
+
index (int): Index
|
19 |
+
|
20 |
+
Returns:
|
21 |
+
tuple: (sample, target) where target is class_index of the target class.
|
22 |
+
"""
|
23 |
+
path, target = self.samples[index]
|
24 |
+
sample = self.loader(path)
|
25 |
+
|
26 |
+
gauss_blur = ImageFilter.GaussianBlur(11)
|
27 |
+
median_blur = ImageFilter.MedianFilter(11)
|
28 |
+
|
29 |
+
blurred_img1 = sample.filter(gauss_blur)
|
30 |
+
blurred_img2 = sample.filter(median_blur)
|
31 |
+
blurred_img = Image.blend(blurred_img1, blurred_img2, 0.5)
|
32 |
+
|
33 |
+
if self.transform is not None:
|
34 |
+
sample = self.transform(sample)
|
35 |
+
blurred_img = self.transform(blurred_img)
|
36 |
+
if self.target_transform is not None:
|
37 |
+
target = self.target_transform(target)
|
38 |
+
|
39 |
+
return (sample, blurred_img), target
|
40 |
+
|
41 |
+
|
42 |
+
class Imagenet_Segmentation(data.Dataset):
|
43 |
+
CLASSES = 2
|
44 |
+
|
45 |
+
def __init__(self,
|
46 |
+
path,
|
47 |
+
transform=None,
|
48 |
+
target_transform=None):
|
49 |
+
self.path = path
|
50 |
+
self.transform = transform
|
51 |
+
self.target_transform = target_transform
|
52 |
+
# self.h5py = h5py.File(path, 'r+')
|
53 |
+
self.h5py = None
|
54 |
+
with h5py.File(path, 'r') as tmp:
|
55 |
+
self.data_length = len(tmp['/value/img'])
|
56 |
+
|
57 |
+
def __getitem__(self, index):
|
58 |
+
|
59 |
+
if self.h5py is None:
|
60 |
+
self.h5py = h5py.File(self.path, 'r')
|
61 |
+
|
62 |
+
img = np.array(self.h5py[self.h5py['/value/img'][index, 0]]).transpose((2, 1, 0))
|
63 |
+
target = np.array(self.h5py[self.h5py[self.h5py['/value/gt'][index, 0]][0, 0]]).transpose((1, 0))
|
64 |
+
|
65 |
+
img = Image.fromarray(img).convert('RGB')
|
66 |
+
target = Image.fromarray(target)
|
67 |
+
|
68 |
+
if self.transform is not None:
|
69 |
+
img = self.transform(img)
|
70 |
+
|
71 |
+
if self.target_transform is not None:
|
72 |
+
target = np.array(self.target_transform(target)).astype('int32')
|
73 |
+
target = torch.from_numpy(target).long()
|
74 |
+
|
75 |
+
return img, target
|
76 |
+
|
77 |
+
def __len__(self):
|
78 |
+
# return len(self.h5py['/value/img'])
|
79 |
+
return self.data_length
|
80 |
+
|
81 |
+
|
82 |
+
class Imagenet_Segmentation_Blur(data.Dataset):
|
83 |
+
CLASSES = 2
|
84 |
+
|
85 |
+
def __init__(self,
|
86 |
+
path,
|
87 |
+
transform=None,
|
88 |
+
target_transform=None):
|
89 |
+
self.path = path
|
90 |
+
self.transform = transform
|
91 |
+
self.target_transform = target_transform
|
92 |
+
# self.h5py = h5py.File(path, 'r+')
|
93 |
+
self.h5py = None
|
94 |
+
tmp = h5py.File(path, 'r')
|
95 |
+
self.data_length = len(tmp['/value/img'])
|
96 |
+
tmp.close()
|
97 |
+
del tmp
|
98 |
+
|
99 |
+
def __getitem__(self, index):
|
100 |
+
|
101 |
+
if self.h5py is None:
|
102 |
+
self.h5py = h5py.File(self.path, 'r')
|
103 |
+
|
104 |
+
img = np.array(self.h5py[self.h5py['/value/img'][index, 0]]).transpose((2, 1, 0))
|
105 |
+
target = np.array(self.h5py[self.h5py[self.h5py['/value/gt'][index, 0]][0, 0]]).transpose((1, 0))
|
106 |
+
|
107 |
+
img = Image.fromarray(img).convert('RGB')
|
108 |
+
target = Image.fromarray(target)
|
109 |
+
|
110 |
+
gauss_blur = ImageFilter.GaussianBlur(11)
|
111 |
+
median_blur = ImageFilter.MedianFilter(11)
|
112 |
+
|
113 |
+
blurred_img1 = img.filter(gauss_blur)
|
114 |
+
blurred_img2 = img.filter(median_blur)
|
115 |
+
blurred_img = Image.blend(blurred_img1, blurred_img2, 0.5)
|
116 |
+
|
117 |
+
# blurred_img1 = cv2.GaussianBlur(img, (11, 11), 5)
|
118 |
+
# blurred_img2 = np.float32(cv2.medianBlur(img, 11))
|
119 |
+
# blurred_img = (blurred_img1 + blurred_img2) / 2
|
120 |
+
|
121 |
+
if self.transform is not None:
|
122 |
+
img = self.transform(img)
|
123 |
+
blurred_img = self.transform(blurred_img)
|
124 |
+
|
125 |
+
if self.target_transform is not None:
|
126 |
+
target = np.array(self.target_transform(target)).astype('int32')
|
127 |
+
target = torch.from_numpy(target).long()
|
128 |
+
|
129 |
+
return (img, blurred_img), target
|
130 |
+
|
131 |
+
def __len__(self):
|
132 |
+
# return len(self.h5py['/value/img'])
|
133 |
+
return self.data_length
|
134 |
+
|
135 |
+
|
136 |
+
class Imagenet_Segmentation_eval_dir(data.Dataset):
|
137 |
+
CLASSES = 2
|
138 |
+
|
139 |
+
def __init__(self,
|
140 |
+
path,
|
141 |
+
eval_path,
|
142 |
+
transform=None,
|
143 |
+
target_transform=None):
|
144 |
+
self.transform = transform
|
145 |
+
self.target_transform = target_transform
|
146 |
+
self.h5py = h5py.File(path, 'r+')
|
147 |
+
|
148 |
+
# 500 each file
|
149 |
+
self.results = glob(os.path.join(eval_path, '*.npy'))
|
150 |
+
|
151 |
+
def __getitem__(self, index):
|
152 |
+
|
153 |
+
img = np.array(self.h5py[self.h5py['/value/img'][index, 0]]).transpose((2, 1, 0))
|
154 |
+
target = np.array(self.h5py[self.h5py[self.h5py['/value/gt'][index, 0]][0, 0]]).transpose((1, 0))
|
155 |
+
res = np.load(self.results[index])
|
156 |
+
|
157 |
+
img = Image.fromarray(img).convert('RGB')
|
158 |
+
target = Image.fromarray(target)
|
159 |
+
|
160 |
+
if self.transform is not None:
|
161 |
+
img = self.transform(img)
|
162 |
+
|
163 |
+
if self.target_transform is not None:
|
164 |
+
target = np.array(self.target_transform(target)).astype('int32')
|
165 |
+
target = torch.from_numpy(target).long()
|
166 |
+
|
167 |
+
return img, target
|
168 |
+
|
169 |
+
def __len__(self):
|
170 |
+
return len(self.h5py['/value/img'])
|
171 |
+
|
172 |
+
|
173 |
+
if __name__ == '__main__':
|
174 |
+
import torchvision.transforms as transforms
|
175 |
+
from tqdm import tqdm
|
176 |
+
from imageio import imsave
|
177 |
+
import scipy.io as sio
|
178 |
+
|
179 |
+
# meta = sio.loadmat('/home/shirgur/ext/Data/Datasets/temp/ILSVRC2012_devkit_t12/data/meta.mat', squeeze_me=True)['synsets']
|
180 |
+
|
181 |
+
# Data
|
182 |
+
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
183 |
+
std=[0.229, 0.224, 0.225])
|
184 |
+
test_img_trans = transforms.Compose([
|
185 |
+
transforms.Resize((224, 224)),
|
186 |
+
transforms.ToTensor(),
|
187 |
+
normalize,
|
188 |
+
])
|
189 |
+
test_lbl_trans = transforms.Compose([
|
190 |
+
transforms.Resize((224, 224), Image.NEAREST),
|
191 |
+
])
|
192 |
+
|
193 |
+
ds = Imagenet_Segmentation('/home/shirgur/ext/Data/Datasets/imagenet-seg/other/gtsegs_ijcv.mat',
|
194 |
+
transform=test_img_trans, target_transform=test_lbl_trans)
|
195 |
+
|
196 |
+
for i, (img, tgt) in enumerate(tqdm(ds)):
|
197 |
+
tgt = (tgt.numpy() * 255).astype(np.uint8)
|
198 |
+
imsave('/home/shirgur/ext/Code/C2S/run/imagenet/gt/{}.png'.format(i), tgt)
|
199 |
+
|
200 |
+
print('here')
|
concept_attention/binary_segmentation_baselines/chefer_vit_explainability/data/imagenet_utils.py
ADDED
@@ -0,0 +1,1002 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
CLS2IDX = {
|
2 |
+
0: 'tench, Tinca tinca',
|
3 |
+
1: 'goldfish, Carassius auratus',
|
4 |
+
2: 'great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias',
|
5 |
+
3: 'tiger shark, Galeocerdo cuvieri',
|
6 |
+
4: 'hammerhead, hammerhead shark',
|
7 |
+
5: 'electric ray, crampfish, numbfish, torpedo',
|
8 |
+
6: 'stingray',
|
9 |
+
7: 'cock',
|
10 |
+
8: 'hen',
|
11 |
+
9: 'ostrich, Struthio camelus',
|
12 |
+
10: 'brambling, Fringilla montifringilla',
|
13 |
+
11: 'goldfinch, Carduelis carduelis',
|
14 |
+
12: 'house finch, linnet, Carpodacus mexicanus',
|
15 |
+
13: 'junco, snowbird',
|
16 |
+
14: 'indigo bunting, indigo finch, indigo bird, Passerina cyanea',
|
17 |
+
15: 'robin, American robin, Turdus migratorius',
|
18 |
+
16: 'bulbul',
|
19 |
+
17: 'jay',
|
20 |
+
18: 'magpie',
|
21 |
+
19: 'chickadee',
|
22 |
+
20: 'water ouzel, dipper',
|
23 |
+
21: 'kite',
|
24 |
+
22: 'bald eagle, American eagle, Haliaeetus leucocephalus',
|
25 |
+
23: 'vulture',
|
26 |
+
24: 'great grey owl, great gray owl, Strix nebulosa',
|
27 |
+
25: 'European fire salamander, Salamandra salamandra',
|
28 |
+
26: 'common newt, Triturus vulgaris',
|
29 |
+
27: 'eft',
|
30 |
+
28: 'spotted salamander, Ambystoma maculatum',
|
31 |
+
29: 'axolotl, mud puppy, Ambystoma mexicanum',
|
32 |
+
30: 'bullfrog, Rana catesbeiana',
|
33 |
+
31: 'tree frog, tree-frog',
|
34 |
+
32: 'tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui',
|
35 |
+
33: 'loggerhead, loggerhead turtle, Caretta caretta',
|
36 |
+
34: 'leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea',
|
37 |
+
35: 'mud turtle',
|
38 |
+
36: 'terrapin',
|
39 |
+
37: 'box turtle, box tortoise',
|
40 |
+
38: 'banded gecko',
|
41 |
+
39: 'common iguana, iguana, Iguana iguana',
|
42 |
+
40: 'American chameleon, anole, Anolis carolinensis',
|
43 |
+
41: 'whiptail, whiptail lizard',
|
44 |
+
42: 'agama',
|
45 |
+
43: 'frilled lizard, Chlamydosaurus kingi',
|
46 |
+
44: 'alligator lizard',
|
47 |
+
45: 'Gila monster, Heloderma suspectum',
|
48 |
+
46: 'green lizard, Lacerta viridis',
|
49 |
+
47: 'African chameleon, Chamaeleo chamaeleon',
|
50 |
+
48: 'Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis',
|
51 |
+
49: 'African crocodile, Nile crocodile, Crocodylus niloticus',
|
52 |
+
50: 'American alligator, Alligator mississipiensis',
|
53 |
+
51: 'triceratops',
|
54 |
+
52: 'thunder snake, worm snake, Carphophis amoenus',
|
55 |
+
53: 'ringneck snake, ring-necked snake, ring snake',
|
56 |
+
54: 'hognose snake, puff adder, sand viper',
|
57 |
+
55: 'green snake, grass snake',
|
58 |
+
56: 'king snake, kingsnake',
|
59 |
+
57: 'garter snake, grass snake',
|
60 |
+
58: 'water snake',
|
61 |
+
59: 'vine snake',
|
62 |
+
60: 'night snake, Hypsiglena torquata',
|
63 |
+
61: 'boa constrictor, Constrictor constrictor',
|
64 |
+
62: 'rock python, rock snake, Python sebae',
|
65 |
+
63: 'Indian cobra, Naja naja',
|
66 |
+
64: 'green mamba',
|
67 |
+
65: 'sea snake',
|
68 |
+
66: 'horned viper, cerastes, sand viper, horned asp, Cerastes cornutus',
|
69 |
+
67: 'diamondback, diamondback rattlesnake, Crotalus adamanteus',
|
70 |
+
68: 'sidewinder, horned rattlesnake, Crotalus cerastes',
|
71 |
+
69: 'trilobite',
|
72 |
+
70: 'harvestman, daddy longlegs, Phalangium opilio',
|
73 |
+
71: 'scorpion',
|
74 |
+
72: 'black and gold garden spider, Argiope aurantia',
|
75 |
+
73: 'barn spider, Araneus cavaticus',
|
76 |
+
74: 'garden spider, Aranea diademata',
|
77 |
+
75: 'black widow, Latrodectus mactans',
|
78 |
+
76: 'tarantula',
|
79 |
+
77: 'wolf spider, hunting spider',
|
80 |
+
78: 'tick',
|
81 |
+
79: 'centipede',
|
82 |
+
80: 'black grouse',
|
83 |
+
81: 'ptarmigan',
|
84 |
+
82: 'ruffed grouse, partridge, Bonasa umbellus',
|
85 |
+
83: 'prairie chicken, prairie grouse, prairie fowl',
|
86 |
+
84: 'peacock',
|
87 |
+
85: 'quail',
|
88 |
+
86: 'partridge',
|
89 |
+
87: 'African grey, African gray, Psittacus erithacus',
|
90 |
+
88: 'macaw',
|
91 |
+
89: 'sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita',
|
92 |
+
90: 'lorikeet',
|
93 |
+
91: 'coucal',
|
94 |
+
92: 'bee eater',
|
95 |
+
93: 'hornbill',
|
96 |
+
94: 'hummingbird',
|
97 |
+
95: 'jacamar',
|
98 |
+
96: 'toucan',
|
99 |
+
97: 'drake',
|
100 |
+
98: 'red-breasted merganser, Mergus serrator',
|
101 |
+
99: 'goose',
|
102 |
+
100: 'black swan, Cygnus atratus',
|
103 |
+
101: 'tusker',
|
104 |
+
102: 'echidna, spiny anteater, anteater',
|
105 |
+
103: 'platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus',
|
106 |
+
104: 'wallaby, brush kangaroo',
|
107 |
+
105: 'koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus',
|
108 |
+
106: 'wombat',
|
109 |
+
107: 'jellyfish',
|
110 |
+
108: 'sea anemone, anemone',
|
111 |
+
109: 'brain coral',
|
112 |
+
110: 'flatworm, platyhelminth',
|
113 |
+
111: 'nematode, nematode worm, roundworm',
|
114 |
+
112: 'conch',
|
115 |
+
113: 'snail',
|
116 |
+
114: 'slug',
|
117 |
+
115: 'sea slug, nudibranch',
|
118 |
+
116: 'chiton, coat-of-mail shell, sea cradle, polyplacophore',
|
119 |
+
117: 'chambered nautilus, pearly nautilus, nautilus',
|
120 |
+
118: 'Dungeness crab, Cancer magister',
|
121 |
+
119: 'rock crab, Cancer irroratus',
|
122 |
+
120: 'fiddler crab',
|
123 |
+
121: 'king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica',
|
124 |
+
122: 'American lobster, Northern lobster, Maine lobster, Homarus americanus',
|
125 |
+
123: 'spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish',
|
126 |
+
124: 'crayfish, crawfish, crawdad, crawdaddy',
|
127 |
+
125: 'hermit crab',
|
128 |
+
126: 'isopod',
|
129 |
+
127: 'white stork, Ciconia ciconia',
|
130 |
+
128: 'black stork, Ciconia nigra',
|
131 |
+
129: 'spoonbill',
|
132 |
+
130: 'flamingo',
|
133 |
+
131: 'little blue heron, Egretta caerulea',
|
134 |
+
132: 'American egret, great white heron, Egretta albus',
|
135 |
+
133: 'bittern',
|
136 |
+
134: 'crane',
|
137 |
+
135: 'limpkin, Aramus pictus',
|
138 |
+
136: 'European gallinule, Porphyrio porphyrio',
|
139 |
+
137: 'American coot, marsh hen, mud hen, water hen, Fulica americana',
|
140 |
+
138: 'bustard',
|
141 |
+
139: 'ruddy turnstone, Arenaria interpres',
|
142 |
+
140: 'red-backed sandpiper, dunlin, Erolia alpina',
|
143 |
+
141: 'redshank, Tringa totanus',
|
144 |
+
142: 'dowitcher',
|
145 |
+
143: 'oystercatcher, oyster catcher',
|
146 |
+
144: 'pelican',
|
147 |
+
145: 'king penguin, Aptenodytes patagonica',
|
148 |
+
146: 'albatross, mollymawk',
|
149 |
+
147: 'grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus',
|
150 |
+
148: 'killer whale, killer, orca, grampus, sea wolf, Orcinus orca',
|
151 |
+
149: 'dugong, Dugong dugon',
|
152 |
+
150: 'sea lion',
|
153 |
+
151: 'Chihuahua',
|
154 |
+
152: 'Japanese spaniel',
|
155 |
+
153: 'Maltese dog, Maltese terrier, Maltese',
|
156 |
+
154: 'Pekinese, Pekingese, Peke',
|
157 |
+
155: 'Shih-Tzu',
|
158 |
+
156: 'Blenheim spaniel',
|
159 |
+
157: 'papillon',
|
160 |
+
158: 'toy terrier',
|
161 |
+
159: 'Rhodesian ridgeback',
|
162 |
+
160: 'Afghan hound, Afghan',
|
163 |
+
161: 'basset, basset hound',
|
164 |
+
162: 'beagle',
|
165 |
+
163: 'bloodhound, sleuthhound',
|
166 |
+
164: 'bluetick',
|
167 |
+
165: 'black-and-tan coonhound',
|
168 |
+
166: 'Walker hound, Walker foxhound',
|
169 |
+
167: 'English foxhound',
|
170 |
+
168: 'redbone',
|
171 |
+
169: 'borzoi, Russian wolfhound',
|
172 |
+
170: 'Irish wolfhound',
|
173 |
+
171: 'Italian greyhound',
|
174 |
+
172: 'whippet',
|
175 |
+
173: 'Ibizan hound, Ibizan Podenco',
|
176 |
+
174: 'Norwegian elkhound, elkhound',
|
177 |
+
175: 'otterhound, otter hound',
|
178 |
+
176: 'Saluki, gazelle hound',
|
179 |
+
177: 'Scottish deerhound, deerhound',
|
180 |
+
178: 'Weimaraner',
|
181 |
+
179: 'Staffordshire bullterrier, Staffordshire bull terrier',
|
182 |
+
180: 'American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier',
|
183 |
+
181: 'Bedlington terrier',
|
184 |
+
182: 'Border terrier',
|
185 |
+
183: 'Kerry blue terrier',
|
186 |
+
184: 'Irish terrier',
|
187 |
+
185: 'Norfolk terrier',
|
188 |
+
186: 'Norwich terrier',
|
189 |
+
187: 'Yorkshire terrier',
|
190 |
+
188: 'wire-haired fox terrier',
|
191 |
+
189: 'Lakeland terrier',
|
192 |
+
190: 'Sealyham terrier, Sealyham',
|
193 |
+
191: 'Airedale, Airedale terrier',
|
194 |
+
192: 'cairn, cairn terrier',
|
195 |
+
193: 'Australian terrier',
|
196 |
+
194: 'Dandie Dinmont, Dandie Dinmont terrier',
|
197 |
+
195: 'Boston bull, Boston terrier',
|
198 |
+
196: 'miniature schnauzer',
|
199 |
+
197: 'giant schnauzer',
|
200 |
+
198: 'standard schnauzer',
|
201 |
+
199: 'Scotch terrier, Scottish terrier, Scottie',
|
202 |
+
200: 'Tibetan terrier, chrysanthemum dog',
|
203 |
+
201: 'silky terrier, Sydney silky',
|
204 |
+
202: 'soft-coated wheaten terrier',
|
205 |
+
203: 'West Highland white terrier',
|
206 |
+
204: 'Lhasa, Lhasa apso',
|
207 |
+
205: 'flat-coated retriever',
|
208 |
+
206: 'curly-coated retriever',
|
209 |
+
207: 'golden retriever',
|
210 |
+
208: 'Labrador retriever',
|
211 |
+
209: 'Chesapeake Bay retriever',
|
212 |
+
210: 'German short-haired pointer',
|
213 |
+
211: 'vizsla, Hungarian pointer',
|
214 |
+
212: 'English setter',
|
215 |
+
213: 'Irish setter, red setter',
|
216 |
+
214: 'Gordon setter',
|
217 |
+
215: 'Brittany spaniel',
|
218 |
+
216: 'clumber, clumber spaniel',
|
219 |
+
217: 'English springer, English springer spaniel',
|
220 |
+
218: 'Welsh springer spaniel',
|
221 |
+
219: 'cocker spaniel, English cocker spaniel, cocker',
|
222 |
+
220: 'Sussex spaniel',
|
223 |
+
221: 'Irish water spaniel',
|
224 |
+
222: 'kuvasz',
|
225 |
+
223: 'schipperke',
|
226 |
+
224: 'groenendael',
|
227 |
+
225: 'malinois',
|
228 |
+
226: 'briard',
|
229 |
+
227: 'kelpie',
|
230 |
+
228: 'komondor',
|
231 |
+
229: 'Old English sheepdog, bobtail',
|
232 |
+
230: 'Shetland sheepdog, Shetland sheep dog, Shetland',
|
233 |
+
231: 'collie',
|
234 |
+
232: 'Border collie',
|
235 |
+
233: 'Bouvier des Flandres, Bouviers des Flandres',
|
236 |
+
234: 'Rottweiler',
|
237 |
+
235: 'German shepherd, German shepherd dog, German police dog, alsatian',
|
238 |
+
236: 'Doberman, Doberman pinscher',
|
239 |
+
237: 'miniature pinscher',
|
240 |
+
238: 'Greater Swiss Mountain dog',
|
241 |
+
239: 'Bernese mountain dog',
|
242 |
+
240: 'Appenzeller',
|
243 |
+
241: 'EntleBucher',
|
244 |
+
242: 'boxer',
|
245 |
+
243: 'bull mastiff',
|
246 |
+
244: 'Tibetan mastiff',
|
247 |
+
245: 'French bulldog',
|
248 |
+
246: 'Great Dane',
|
249 |
+
247: 'Saint Bernard, St Bernard',
|
250 |
+
248: 'Eskimo dog, husky',
|
251 |
+
249: 'malamute, malemute, Alaskan malamute',
|
252 |
+
250: 'Siberian husky',
|
253 |
+
251: 'dalmatian, coach dog, carriage dog',
|
254 |
+
252: 'affenpinscher, monkey pinscher, monkey dog',
|
255 |
+
253: 'basenji',
|
256 |
+
254: 'pug, pug-dog',
|
257 |
+
255: 'Leonberg',
|
258 |
+
256: 'Newfoundland, Newfoundland dog',
|
259 |
+
257: 'Great Pyrenees',
|
260 |
+
258: 'Samoyed, Samoyede',
|
261 |
+
259: 'Pomeranian',
|
262 |
+
260: 'chow, chow chow',
|
263 |
+
261: 'keeshond',
|
264 |
+
262: 'Brabancon griffon',
|
265 |
+
263: 'Pembroke, Pembroke Welsh corgi',
|
266 |
+
264: 'Cardigan, Cardigan Welsh corgi',
|
267 |
+
265: 'toy poodle',
|
268 |
+
266: 'miniature poodle',
|
269 |
+
267: 'standard poodle',
|
270 |
+
268: 'Mexican hairless',
|
271 |
+
269: 'timber wolf, grey wolf, gray wolf, Canis lupus',
|
272 |
+
270: 'white wolf, Arctic wolf, Canis lupus tundrarum',
|
273 |
+
271: 'red wolf, maned wolf, Canis rufus, Canis niger',
|
274 |
+
272: 'coyote, prairie wolf, brush wolf, Canis latrans',
|
275 |
+
273: 'dingo, warrigal, warragal, Canis dingo',
|
276 |
+
274: 'dhole, Cuon alpinus',
|
277 |
+
275: 'African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus',
|
278 |
+
276: 'hyena, hyaena',
|
279 |
+
277: 'red fox, Vulpes vulpes',
|
280 |
+
278: 'kit fox, Vulpes macrotis',
|
281 |
+
279: 'Arctic fox, white fox, Alopex lagopus',
|
282 |
+
280: 'grey fox, gray fox, Urocyon cinereoargenteus',
|
283 |
+
281: 'tabby, tabby cat',
|
284 |
+
282: 'tiger cat',
|
285 |
+
283: 'Persian cat',
|
286 |
+
284: 'Siamese cat, Siamese',
|
287 |
+
285: 'Egyptian cat',
|
288 |
+
286: 'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor',
|
289 |
+
287: 'lynx, catamount',
|
290 |
+
288: 'leopard, Panthera pardus',
|
291 |
+
289: 'snow leopard, ounce, Panthera uncia',
|
292 |
+
290: 'jaguar, panther, Panthera onca, Felis onca',
|
293 |
+
291: 'lion, king of beasts, Panthera leo',
|
294 |
+
292: 'tiger, Panthera tigris',
|
295 |
+
293: 'cheetah, chetah, Acinonyx jubatus',
|
296 |
+
294: 'brown bear, bruin, Ursus arctos',
|
297 |
+
295: 'American black bear, black bear, Ursus americanus, Euarctos americanus',
|
298 |
+
296: 'ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus',
|
299 |
+
297: 'sloth bear, Melursus ursinus, Ursus ursinus',
|
300 |
+
298: 'mongoose',
|
301 |
+
299: 'meerkat, mierkat',
|
302 |
+
300: 'tiger beetle',
|
303 |
+
301: 'ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle',
|
304 |
+
302: 'ground beetle, carabid beetle',
|
305 |
+
303: 'long-horned beetle, longicorn, longicorn beetle',
|
306 |
+
304: 'leaf beetle, chrysomelid',
|
307 |
+
305: 'dung beetle',
|
308 |
+
306: 'rhinoceros beetle',
|
309 |
+
307: 'weevil',
|
310 |
+
308: 'fly',
|
311 |
+
309: 'bee',
|
312 |
+
310: 'ant, emmet, pismire',
|
313 |
+
311: 'grasshopper, hopper',
|
314 |
+
312: 'cricket',
|
315 |
+
313: 'walking stick, walkingstick, stick insect',
|
316 |
+
314: 'cockroach, roach',
|
317 |
+
315: 'mantis, mantid',
|
318 |
+
316: 'cicada, cicala',
|
319 |
+
317: 'leafhopper',
|
320 |
+
318: 'lacewing, lacewing fly',
|
321 |
+
319: "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk",
|
322 |
+
320: 'damselfly',
|
323 |
+
321: 'admiral',
|
324 |
+
322: 'ringlet, ringlet butterfly',
|
325 |
+
323: 'monarch, monarch butterfly, milkweed butterfly, Danaus plexippus',
|
326 |
+
324: 'cabbage butterfly',
|
327 |
+
325: 'sulphur butterfly, sulfur butterfly',
|
328 |
+
326: 'lycaenid, lycaenid butterfly',
|
329 |
+
327: 'starfish, sea star',
|
330 |
+
328: 'sea urchin',
|
331 |
+
329: 'sea cucumber, holothurian',
|
332 |
+
330: 'wood rabbit, cottontail, cottontail rabbit',
|
333 |
+
331: 'hare',
|
334 |
+
332: 'Angora, Angora rabbit',
|
335 |
+
333: 'hamster',
|
336 |
+
334: 'porcupine, hedgehog',
|
337 |
+
335: 'fox squirrel, eastern fox squirrel, Sciurus niger',
|
338 |
+
336: 'marmot',
|
339 |
+
337: 'beaver',
|
340 |
+
338: 'guinea pig, Cavia cobaya',
|
341 |
+
339: 'sorrel',
|
342 |
+
340: 'zebra',
|
343 |
+
341: 'hog, pig, grunter, squealer, Sus scrofa',
|
344 |
+
342: 'wild boar, boar, Sus scrofa',
|
345 |
+
343: 'warthog',
|
346 |
+
344: 'hippopotamus, hippo, river horse, Hippopotamus amphibius',
|
347 |
+
345: 'ox',
|
348 |
+
346: 'water buffalo, water ox, Asiatic buffalo, Bubalus bubalis',
|
349 |
+
347: 'bison',
|
350 |
+
348: 'ram, tup',
|
351 |
+
349: 'bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis',
|
352 |
+
350: 'ibex, Capra ibex',
|
353 |
+
351: 'hartebeest',
|
354 |
+
352: 'impala, Aepyceros melampus',
|
355 |
+
353: 'gazelle',
|
356 |
+
354: 'Arabian camel, dromedary, Camelus dromedarius',
|
357 |
+
355: 'llama',
|
358 |
+
356: 'weasel',
|
359 |
+
357: 'mink',
|
360 |
+
358: 'polecat, fitch, foulmart, foumart, Mustela putorius',
|
361 |
+
359: 'black-footed ferret, ferret, Mustela nigripes',
|
362 |
+
360: 'otter',
|
363 |
+
361: 'skunk, polecat, wood pussy',
|
364 |
+
362: 'badger',
|
365 |
+
363: 'armadillo',
|
366 |
+
364: 'three-toed sloth, ai, Bradypus tridactylus',
|
367 |
+
365: 'orangutan, orang, orangutang, Pongo pygmaeus',
|
368 |
+
366: 'gorilla, Gorilla gorilla',
|
369 |
+
367: 'chimpanzee, chimp, Pan troglodytes',
|
370 |
+
368: 'gibbon, Hylobates lar',
|
371 |
+
369: 'siamang, Hylobates syndactylus, Symphalangus syndactylus',
|
372 |
+
370: 'guenon, guenon monkey',
|
373 |
+
371: 'patas, hussar monkey, Erythrocebus patas',
|
374 |
+
372: 'baboon',
|
375 |
+
373: 'macaque',
|
376 |
+
374: 'langur',
|
377 |
+
375: 'colobus, colobus monkey',
|
378 |
+
376: 'proboscis monkey, Nasalis larvatus',
|
379 |
+
377: 'marmoset',
|
380 |
+
378: 'capuchin, ringtail, Cebus capucinus',
|
381 |
+
379: 'howler monkey, howler',
|
382 |
+
380: 'titi, titi monkey',
|
383 |
+
381: 'spider monkey, Ateles geoffroyi',
|
384 |
+
382: 'squirrel monkey, Saimiri sciureus',
|
385 |
+
383: 'Madagascar cat, ring-tailed lemur, Lemur catta',
|
386 |
+
384: 'indri, indris, Indri indri, Indri brevicaudatus',
|
387 |
+
385: 'Indian elephant, Elephas maximus',
|
388 |
+
386: 'African elephant, Loxodonta africana',
|
389 |
+
387: 'lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens',
|
390 |
+
388: 'giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca',
|
391 |
+
389: 'barracouta, snoek',
|
392 |
+
390: 'eel',
|
393 |
+
391: 'coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch',
|
394 |
+
392: 'rock beauty, Holocanthus tricolor',
|
395 |
+
393: 'anemone fish',
|
396 |
+
394: 'sturgeon',
|
397 |
+
395: 'gar, garfish, garpike, billfish, Lepisosteus osseus',
|
398 |
+
396: 'lionfish',
|
399 |
+
397: 'puffer, pufferfish, blowfish, globefish',
|
400 |
+
398: 'abacus',
|
401 |
+
399: 'abaya',
|
402 |
+
400: "academic gown, academic robe, judge's robe",
|
403 |
+
401: 'accordion, piano accordion, squeeze box',
|
404 |
+
402: 'acoustic guitar',
|
405 |
+
403: 'aircraft carrier, carrier, flattop, attack aircraft carrier',
|
406 |
+
404: 'airliner',
|
407 |
+
405: 'airship, dirigible',
|
408 |
+
406: 'altar',
|
409 |
+
407: 'ambulance',
|
410 |
+
408: 'amphibian, amphibious vehicle',
|
411 |
+
409: 'analog clock',
|
412 |
+
410: 'apiary, bee house',
|
413 |
+
411: 'apron',
|
414 |
+
412: 'ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin',
|
415 |
+
413: 'assault rifle, assault gun',
|
416 |
+
414: 'backpack, back pack, knapsack, packsack, rucksack, haversack',
|
417 |
+
415: 'bakery, bakeshop, bakehouse',
|
418 |
+
416: 'balance beam, beam',
|
419 |
+
417: 'balloon',
|
420 |
+
418: 'ballpoint, ballpoint pen, ballpen, Biro',
|
421 |
+
419: 'Band Aid',
|
422 |
+
420: 'banjo',
|
423 |
+
421: 'bannister, banister, balustrade, balusters, handrail',
|
424 |
+
422: 'barbell',
|
425 |
+
423: 'barber chair',
|
426 |
+
424: 'barbershop',
|
427 |
+
425: 'barn',
|
428 |
+
426: 'barometer',
|
429 |
+
427: 'barrel, cask',
|
430 |
+
428: 'barrow, garden cart, lawn cart, wheelbarrow',
|
431 |
+
429: 'baseball',
|
432 |
+
430: 'basketball',
|
433 |
+
431: 'bassinet',
|
434 |
+
432: 'bassoon',
|
435 |
+
433: 'bathing cap, swimming cap',
|
436 |
+
434: 'bath towel',
|
437 |
+
435: 'bathtub, bathing tub, bath, tub',
|
438 |
+
436: 'beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon',
|
439 |
+
437: 'beacon, lighthouse, beacon light, pharos',
|
440 |
+
438: 'beaker',
|
441 |
+
439: 'bearskin, busby, shako',
|
442 |
+
440: 'beer bottle',
|
443 |
+
441: 'beer glass',
|
444 |
+
442: 'bell cote, bell cot',
|
445 |
+
443: 'bib',
|
446 |
+
444: 'bicycle-built-for-two, tandem bicycle, tandem',
|
447 |
+
445: 'bikini, two-piece',
|
448 |
+
446: 'binder, ring-binder',
|
449 |
+
447: 'binoculars, field glasses, opera glasses',
|
450 |
+
448: 'birdhouse',
|
451 |
+
449: 'boathouse',
|
452 |
+
450: 'bobsled, bobsleigh, bob',
|
453 |
+
451: 'bolo tie, bolo, bola tie, bola',
|
454 |
+
452: 'bonnet, poke bonnet',
|
455 |
+
453: 'bookcase',
|
456 |
+
454: 'bookshop, bookstore, bookstall',
|
457 |
+
455: 'bottlecap',
|
458 |
+
456: 'bow',
|
459 |
+
457: 'bow tie, bow-tie, bowtie',
|
460 |
+
458: 'brass, memorial tablet, plaque',
|
461 |
+
459: 'brassiere, bra, bandeau',
|
462 |
+
460: 'breakwater, groin, groyne, mole, bulwark, seawall, jetty',
|
463 |
+
461: 'breastplate, aegis, egis',
|
464 |
+
462: 'broom',
|
465 |
+
463: 'bucket, pail',
|
466 |
+
464: 'buckle',
|
467 |
+
465: 'bulletproof vest',
|
468 |
+
466: 'bullet train, bullet',
|
469 |
+
467: 'butcher shop, meat market',
|
470 |
+
468: 'cab, hack, taxi, taxicab',
|
471 |
+
469: 'caldron, cauldron',
|
472 |
+
470: 'candle, taper, wax light',
|
473 |
+
471: 'cannon',
|
474 |
+
472: 'canoe',
|
475 |
+
473: 'can opener, tin opener',
|
476 |
+
474: 'cardigan',
|
477 |
+
475: 'car mirror',
|
478 |
+
476: 'carousel, carrousel, merry-go-round, roundabout, whirligig',
|
479 |
+
477: "carpenter's kit, tool kit",
|
480 |
+
478: 'carton',
|
481 |
+
479: 'car wheel',
|
482 |
+
480: 'cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM',
|
483 |
+
481: 'cassette',
|
484 |
+
482: 'cassette player',
|
485 |
+
483: 'castle',
|
486 |
+
484: 'catamaran',
|
487 |
+
485: 'CD player',
|
488 |
+
486: 'cello, violoncello',
|
489 |
+
487: 'cellular telephone, cellular phone, cellphone, cell, mobile phone',
|
490 |
+
488: 'chain',
|
491 |
+
489: 'chainlink fence',
|
492 |
+
490: 'chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour',
|
493 |
+
491: 'chain saw, chainsaw',
|
494 |
+
492: 'chest',
|
495 |
+
493: 'chiffonier, commode',
|
496 |
+
494: 'chime, bell, gong',
|
497 |
+
495: 'china cabinet, china closet',
|
498 |
+
496: 'Christmas stocking',
|
499 |
+
497: 'church, church building',
|
500 |
+
498: 'cinema, movie theater, movie theatre, movie house, picture palace',
|
501 |
+
499: 'cleaver, meat cleaver, chopper',
|
502 |
+
500: 'cliff dwelling',
|
503 |
+
501: 'cloak',
|
504 |
+
502: 'clog, geta, patten, sabot',
|
505 |
+
503: 'cocktail shaker',
|
506 |
+
504: 'coffee mug',
|
507 |
+
505: 'coffeepot',
|
508 |
+
506: 'coil, spiral, volute, whorl, helix',
|
509 |
+
507: 'combination lock',
|
510 |
+
508: 'computer keyboard, keypad',
|
511 |
+
509: 'confectionery, confectionary, candy store',
|
512 |
+
510: 'container ship, containership, container vessel',
|
513 |
+
511: 'convertible',
|
514 |
+
512: 'corkscrew, bottle screw',
|
515 |
+
513: 'cornet, horn, trumpet, trump',
|
516 |
+
514: 'cowboy boot',
|
517 |
+
515: 'cowboy hat, ten-gallon hat',
|
518 |
+
516: 'cradle',
|
519 |
+
517: 'crane',
|
520 |
+
518: 'crash helmet',
|
521 |
+
519: 'crate',
|
522 |
+
520: 'crib, cot',
|
523 |
+
521: 'Crock Pot',
|
524 |
+
522: 'croquet ball',
|
525 |
+
523: 'crutch',
|
526 |
+
524: 'cuirass',
|
527 |
+
525: 'dam, dike, dyke',
|
528 |
+
526: 'desk',
|
529 |
+
527: 'desktop computer',
|
530 |
+
528: 'dial telephone, dial phone',
|
531 |
+
529: 'diaper, nappy, napkin',
|
532 |
+
530: 'digital clock',
|
533 |
+
531: 'digital watch',
|
534 |
+
532: 'dining table, board',
|
535 |
+
533: 'dishrag, dishcloth',
|
536 |
+
534: 'dishwasher, dish washer, dishwashing machine',
|
537 |
+
535: 'disk brake, disc brake',
|
538 |
+
536: 'dock, dockage, docking facility',
|
539 |
+
537: 'dogsled, dog sled, dog sleigh',
|
540 |
+
538: 'dome',
|
541 |
+
539: 'doormat, welcome mat',
|
542 |
+
540: 'drilling platform, offshore rig',
|
543 |
+
541: 'drum, membranophone, tympan',
|
544 |
+
542: 'drumstick',
|
545 |
+
543: 'dumbbell',
|
546 |
+
544: 'Dutch oven',
|
547 |
+
545: 'electric fan, blower',
|
548 |
+
546: 'electric guitar',
|
549 |
+
547: 'electric locomotive',
|
550 |
+
548: 'entertainment center',
|
551 |
+
549: 'envelope',
|
552 |
+
550: 'espresso maker',
|
553 |
+
551: 'face powder',
|
554 |
+
552: 'feather boa, boa',
|
555 |
+
553: 'file, file cabinet, filing cabinet',
|
556 |
+
554: 'fireboat',
|
557 |
+
555: 'fire engine, fire truck',
|
558 |
+
556: 'fire screen, fireguard',
|
559 |
+
557: 'flagpole, flagstaff',
|
560 |
+
558: 'flute, transverse flute',
|
561 |
+
559: 'folding chair',
|
562 |
+
560: 'football helmet',
|
563 |
+
561: 'forklift',
|
564 |
+
562: 'fountain',
|
565 |
+
563: 'fountain pen',
|
566 |
+
564: 'four-poster',
|
567 |
+
565: 'freight car',
|
568 |
+
566: 'French horn, horn',
|
569 |
+
567: 'frying pan, frypan, skillet',
|
570 |
+
568: 'fur coat',
|
571 |
+
569: 'garbage truck, dustcart',
|
572 |
+
570: 'gasmask, respirator, gas helmet',
|
573 |
+
571: 'gas pump, gasoline pump, petrol pump, island dispenser',
|
574 |
+
572: 'goblet',
|
575 |
+
573: 'go-kart',
|
576 |
+
574: 'golf ball',
|
577 |
+
575: 'golfcart, golf cart',
|
578 |
+
576: 'gondola',
|
579 |
+
577: 'gong, tam-tam',
|
580 |
+
578: 'gown',
|
581 |
+
579: 'grand piano, grand',
|
582 |
+
580: 'greenhouse, nursery, glasshouse',
|
583 |
+
581: 'grille, radiator grille',
|
584 |
+
582: 'grocery store, grocery, food market, market',
|
585 |
+
583: 'guillotine',
|
586 |
+
584: 'hair slide',
|
587 |
+
585: 'hair spray',
|
588 |
+
586: 'half track',
|
589 |
+
587: 'hammer',
|
590 |
+
588: 'hamper',
|
591 |
+
589: 'hand blower, blow dryer, blow drier, hair dryer, hair drier',
|
592 |
+
590: 'hand-held computer, hand-held microcomputer',
|
593 |
+
591: 'handkerchief, hankie, hanky, hankey',
|
594 |
+
592: 'hard disc, hard disk, fixed disk',
|
595 |
+
593: 'harmonica, mouth organ, harp, mouth harp',
|
596 |
+
594: 'harp',
|
597 |
+
595: 'harvester, reaper',
|
598 |
+
596: 'hatchet',
|
599 |
+
597: 'holster',
|
600 |
+
598: 'home theater, home theatre',
|
601 |
+
599: 'honeycomb',
|
602 |
+
600: 'hook, claw',
|
603 |
+
601: 'hoopskirt, crinoline',
|
604 |
+
602: 'horizontal bar, high bar',
|
605 |
+
603: 'horse cart, horse-cart',
|
606 |
+
604: 'hourglass',
|
607 |
+
605: 'iPod',
|
608 |
+
606: 'iron, smoothing iron',
|
609 |
+
607: "jack-o'-lantern",
|
610 |
+
608: 'jean, blue jean, denim',
|
611 |
+
609: 'jeep, landrover',
|
612 |
+
610: 'jersey, T-shirt, tee shirt',
|
613 |
+
611: 'jigsaw puzzle',
|
614 |
+
612: 'jinrikisha, ricksha, rickshaw',
|
615 |
+
613: 'joystick',
|
616 |
+
614: 'kimono',
|
617 |
+
615: 'knee pad',
|
618 |
+
616: 'knot',
|
619 |
+
617: 'lab coat, laboratory coat',
|
620 |
+
618: 'ladle',
|
621 |
+
619: 'lampshade, lamp shade',
|
622 |
+
620: 'laptop, laptop computer',
|
623 |
+
621: 'lawn mower, mower',
|
624 |
+
622: 'lens cap, lens cover',
|
625 |
+
623: 'letter opener, paper knife, paperknife',
|
626 |
+
624: 'library',
|
627 |
+
625: 'lifeboat',
|
628 |
+
626: 'lighter, light, igniter, ignitor',
|
629 |
+
627: 'limousine, limo',
|
630 |
+
628: 'liner, ocean liner',
|
631 |
+
629: 'lipstick, lip rouge',
|
632 |
+
630: 'Loafer',
|
633 |
+
631: 'lotion',
|
634 |
+
632: 'loudspeaker, speaker, speaker unit, loudspeaker system, speaker system',
|
635 |
+
633: "loupe, jeweler's loupe",
|
636 |
+
634: 'lumbermill, sawmill',
|
637 |
+
635: 'magnetic compass',
|
638 |
+
636: 'mailbag, postbag',
|
639 |
+
637: 'mailbox, letter box',
|
640 |
+
638: 'maillot',
|
641 |
+
639: 'maillot, tank suit',
|
642 |
+
640: 'manhole cover',
|
643 |
+
641: 'maraca',
|
644 |
+
642: 'marimba, xylophone',
|
645 |
+
643: 'mask',
|
646 |
+
644: 'matchstick',
|
647 |
+
645: 'maypole',
|
648 |
+
646: 'maze, labyrinth',
|
649 |
+
647: 'measuring cup',
|
650 |
+
648: 'medicine chest, medicine cabinet',
|
651 |
+
649: 'megalith, megalithic structure',
|
652 |
+
650: 'microphone, mike',
|
653 |
+
651: 'microwave, microwave oven',
|
654 |
+
652: 'military uniform',
|
655 |
+
653: 'milk can',
|
656 |
+
654: 'minibus',
|
657 |
+
655: 'miniskirt, mini',
|
658 |
+
656: 'minivan',
|
659 |
+
657: 'missile',
|
660 |
+
658: 'mitten',
|
661 |
+
659: 'mixing bowl',
|
662 |
+
660: 'mobile home, manufactured home',
|
663 |
+
661: 'Model T',
|
664 |
+
662: 'modem',
|
665 |
+
663: 'monastery',
|
666 |
+
664: 'monitor',
|
667 |
+
665: 'moped',
|
668 |
+
666: 'mortar',
|
669 |
+
667: 'mortarboard',
|
670 |
+
668: 'mosque',
|
671 |
+
669: 'mosquito net',
|
672 |
+
670: 'motor scooter, scooter',
|
673 |
+
671: 'mountain bike, all-terrain bike, off-roader',
|
674 |
+
672: 'mountain tent',
|
675 |
+
673: 'mouse, computer mouse',
|
676 |
+
674: 'mousetrap',
|
677 |
+
675: 'moving van',
|
678 |
+
676: 'muzzle',
|
679 |
+
677: 'nail',
|
680 |
+
678: 'neck brace',
|
681 |
+
679: 'necklace',
|
682 |
+
680: 'nipple',
|
683 |
+
681: 'notebook, notebook computer',
|
684 |
+
682: 'obelisk',
|
685 |
+
683: 'oboe, hautboy, hautbois',
|
686 |
+
684: 'ocarina, sweet potato',
|
687 |
+
685: 'odometer, hodometer, mileometer, milometer',
|
688 |
+
686: 'oil filter',
|
689 |
+
687: 'organ, pipe organ',
|
690 |
+
688: 'oscilloscope, scope, cathode-ray oscilloscope, CRO',
|
691 |
+
689: 'overskirt',
|
692 |
+
690: 'oxcart',
|
693 |
+
691: 'oxygen mask',
|
694 |
+
692: 'packet',
|
695 |
+
693: 'paddle, boat paddle',
|
696 |
+
694: 'paddlewheel, paddle wheel',
|
697 |
+
695: 'padlock',
|
698 |
+
696: 'paintbrush',
|
699 |
+
697: "pajama, pyjama, pj's, jammies",
|
700 |
+
698: 'palace',
|
701 |
+
699: 'panpipe, pandean pipe, syrinx',
|
702 |
+
700: 'paper towel',
|
703 |
+
701: 'parachute, chute',
|
704 |
+
702: 'parallel bars, bars',
|
705 |
+
703: 'park bench',
|
706 |
+
704: 'parking meter',
|
707 |
+
705: 'passenger car, coach, carriage',
|
708 |
+
706: 'patio, terrace',
|
709 |
+
707: 'pay-phone, pay-station',
|
710 |
+
708: 'pedestal, plinth, footstall',
|
711 |
+
709: 'pencil box, pencil case',
|
712 |
+
710: 'pencil sharpener',
|
713 |
+
711: 'perfume, essence',
|
714 |
+
712: 'Petri dish',
|
715 |
+
713: 'photocopier',
|
716 |
+
714: 'pick, plectrum, plectron',
|
717 |
+
715: 'pickelhaube',
|
718 |
+
716: 'picket fence, paling',
|
719 |
+
717: 'pickup, pickup truck',
|
720 |
+
718: 'pier',
|
721 |
+
719: 'piggy bank, penny bank',
|
722 |
+
720: 'pill bottle',
|
723 |
+
721: 'pillow',
|
724 |
+
722: 'ping-pong ball',
|
725 |
+
723: 'pinwheel',
|
726 |
+
724: 'pirate, pirate ship',
|
727 |
+
725: 'pitcher, ewer',
|
728 |
+
726: "plane, carpenter's plane, woodworking plane",
|
729 |
+
727: 'planetarium',
|
730 |
+
728: 'plastic bag',
|
731 |
+
729: 'plate rack',
|
732 |
+
730: 'plow, plough',
|
733 |
+
731: "plunger, plumber's helper",
|
734 |
+
732: 'Polaroid camera, Polaroid Land camera',
|
735 |
+
733: 'pole',
|
736 |
+
734: 'police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria',
|
737 |
+
735: 'poncho',
|
738 |
+
736: 'pool table, billiard table, snooker table',
|
739 |
+
737: 'pop bottle, soda bottle',
|
740 |
+
738: 'pot, flowerpot',
|
741 |
+
739: "potter's wheel",
|
742 |
+
740: 'power drill',
|
743 |
+
741: 'prayer rug, prayer mat',
|
744 |
+
742: 'printer',
|
745 |
+
743: 'prison, prison house',
|
746 |
+
744: 'projectile, missile',
|
747 |
+
745: 'projector',
|
748 |
+
746: 'puck, hockey puck',
|
749 |
+
747: 'punching bag, punch bag, punching ball, punchball',
|
750 |
+
748: 'purse',
|
751 |
+
749: 'quill, quill pen',
|
752 |
+
750: 'quilt, comforter, comfort, puff',
|
753 |
+
751: 'racer, race car, racing car',
|
754 |
+
752: 'racket, racquet',
|
755 |
+
753: 'radiator',
|
756 |
+
754: 'radio, wireless',
|
757 |
+
755: 'radio telescope, radio reflector',
|
758 |
+
756: 'rain barrel',
|
759 |
+
757: 'recreational vehicle, RV, R.V.',
|
760 |
+
758: 'reel',
|
761 |
+
759: 'reflex camera',
|
762 |
+
760: 'refrigerator, icebox',
|
763 |
+
761: 'remote control, remote',
|
764 |
+
762: 'restaurant, eating house, eating place, eatery',
|
765 |
+
763: 'revolver, six-gun, six-shooter',
|
766 |
+
764: 'rifle',
|
767 |
+
765: 'rocking chair, rocker',
|
768 |
+
766: 'rotisserie',
|
769 |
+
767: 'rubber eraser, rubber, pencil eraser',
|
770 |
+
768: 'rugby ball',
|
771 |
+
769: 'rule, ruler',
|
772 |
+
770: 'running shoe',
|
773 |
+
771: 'safe',
|
774 |
+
772: 'safety pin',
|
775 |
+
773: 'saltshaker, salt shaker',
|
776 |
+
774: 'sandal',
|
777 |
+
775: 'sarong',
|
778 |
+
776: 'sax, saxophone',
|
779 |
+
777: 'scabbard',
|
780 |
+
778: 'scale, weighing machine',
|
781 |
+
779: 'school bus',
|
782 |
+
780: 'schooner',
|
783 |
+
781: 'scoreboard',
|
784 |
+
782: 'screen, CRT screen',
|
785 |
+
783: 'screw',
|
786 |
+
784: 'screwdriver',
|
787 |
+
785: 'seat belt, seatbelt',
|
788 |
+
786: 'sewing machine',
|
789 |
+
787: 'shield, buckler',
|
790 |
+
788: 'shoe shop, shoe-shop, shoe store',
|
791 |
+
789: 'shoji',
|
792 |
+
790: 'shopping basket',
|
793 |
+
791: 'shopping cart',
|
794 |
+
792: 'shovel',
|
795 |
+
793: 'shower cap',
|
796 |
+
794: 'shower curtain',
|
797 |
+
795: 'ski',
|
798 |
+
796: 'ski mask',
|
799 |
+
797: 'sleeping bag',
|
800 |
+
798: 'slide rule, slipstick',
|
801 |
+
799: 'sliding door',
|
802 |
+
800: 'slot, one-armed bandit',
|
803 |
+
801: 'snorkel',
|
804 |
+
802: 'snowmobile',
|
805 |
+
803: 'snowplow, snowplough',
|
806 |
+
804: 'soap dispenser',
|
807 |
+
805: 'soccer ball',
|
808 |
+
806: 'sock',
|
809 |
+
807: 'solar dish, solar collector, solar furnace',
|
810 |
+
808: 'sombrero',
|
811 |
+
809: 'soup bowl',
|
812 |
+
810: 'space bar',
|
813 |
+
811: 'space heater',
|
814 |
+
812: 'space shuttle',
|
815 |
+
813: 'spatula',
|
816 |
+
814: 'speedboat',
|
817 |
+
815: "spider web, spider's web",
|
818 |
+
816: 'spindle',
|
819 |
+
817: 'sports car, sport car',
|
820 |
+
818: 'spotlight, spot',
|
821 |
+
819: 'stage',
|
822 |
+
820: 'steam locomotive',
|
823 |
+
821: 'steel arch bridge',
|
824 |
+
822: 'steel drum',
|
825 |
+
823: 'stethoscope',
|
826 |
+
824: 'stole',
|
827 |
+
825: 'stone wall',
|
828 |
+
826: 'stopwatch, stop watch',
|
829 |
+
827: 'stove',
|
830 |
+
828: 'strainer',
|
831 |
+
829: 'streetcar, tram, tramcar, trolley, trolley car',
|
832 |
+
830: 'stretcher',
|
833 |
+
831: 'studio couch, day bed',
|
834 |
+
832: 'stupa, tope',
|
835 |
+
833: 'submarine, pigboat, sub, U-boat',
|
836 |
+
834: 'suit, suit of clothes',
|
837 |
+
835: 'sundial',
|
838 |
+
836: 'sunglass',
|
839 |
+
837: 'sunglasses, dark glasses, shades',
|
840 |
+
838: 'sunscreen, sunblock, sun blocker',
|
841 |
+
839: 'suspension bridge',
|
842 |
+
840: 'swab, swob, mop',
|
843 |
+
841: 'sweatshirt',
|
844 |
+
842: 'swimming trunks, bathing trunks',
|
845 |
+
843: 'swing',
|
846 |
+
844: 'switch, electric switch, electrical switch',
|
847 |
+
845: 'syringe',
|
848 |
+
846: 'table lamp',
|
849 |
+
847: 'tank, army tank, armored combat vehicle, armoured combat vehicle',
|
850 |
+
848: 'tape player',
|
851 |
+
849: 'teapot',
|
852 |
+
850: 'teddy, teddy bear',
|
853 |
+
851: 'television, television system',
|
854 |
+
852: 'tennis ball',
|
855 |
+
853: 'thatch, thatched roof',
|
856 |
+
854: 'theater curtain, theatre curtain',
|
857 |
+
855: 'thimble',
|
858 |
+
856: 'thresher, thrasher, threshing machine',
|
859 |
+
857: 'throne',
|
860 |
+
858: 'tile roof',
|
861 |
+
859: 'toaster',
|
862 |
+
860: 'tobacco shop, tobacconist shop, tobacconist',
|
863 |
+
861: 'toilet seat',
|
864 |
+
862: 'torch',
|
865 |
+
863: 'totem pole',
|
866 |
+
864: 'tow truck, tow car, wrecker',
|
867 |
+
865: 'toyshop',
|
868 |
+
866: 'tractor',
|
869 |
+
867: 'trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi',
|
870 |
+
868: 'tray',
|
871 |
+
869: 'trench coat',
|
872 |
+
870: 'tricycle, trike, velocipede',
|
873 |
+
871: 'trimaran',
|
874 |
+
872: 'tripod',
|
875 |
+
873: 'triumphal arch',
|
876 |
+
874: 'trolleybus, trolley coach, trackless trolley',
|
877 |
+
875: 'trombone',
|
878 |
+
876: 'tub, vat',
|
879 |
+
877: 'turnstile',
|
880 |
+
878: 'typewriter keyboard',
|
881 |
+
879: 'umbrella',
|
882 |
+
880: 'unicycle, monocycle',
|
883 |
+
881: 'upright, upright piano',
|
884 |
+
882: 'vacuum, vacuum cleaner',
|
885 |
+
883: 'vase',
|
886 |
+
884: 'vault',
|
887 |
+
885: 'velvet',
|
888 |
+
886: 'vending machine',
|
889 |
+
887: 'vestment',
|
890 |
+
888: 'viaduct',
|
891 |
+
889: 'violin, fiddle',
|
892 |
+
890: 'volleyball',
|
893 |
+
891: 'waffle iron',
|
894 |
+
892: 'wall clock',
|
895 |
+
893: 'wallet, billfold, notecase, pocketbook',
|
896 |
+
894: 'wardrobe, closet, press',
|
897 |
+
895: 'warplane, military plane',
|
898 |
+
896: 'washbasin, handbasin, washbowl, lavabo, wash-hand basin',
|
899 |
+
897: 'washer, automatic washer, washing machine',
|
900 |
+
898: 'water bottle',
|
901 |
+
899: 'water jug',
|
902 |
+
900: 'water tower',
|
903 |
+
901: 'whiskey jug',
|
904 |
+
902: 'whistle',
|
905 |
+
903: 'wig',
|
906 |
+
904: 'window screen',
|
907 |
+
905: 'window shade',
|
908 |
+
906: 'Windsor tie',
|
909 |
+
907: 'wine bottle',
|
910 |
+
908: 'wing',
|
911 |
+
909: 'wok',
|
912 |
+
910: 'wooden spoon',
|
913 |
+
911: 'wool, woolen, woollen',
|
914 |
+
912: 'worm fence, snake fence, snake-rail fence, Virginia fence',
|
915 |
+
913: 'wreck',
|
916 |
+
914: 'yawl',
|
917 |
+
915: 'yurt',
|
918 |
+
916: 'web site, website, internet site, site',
|
919 |
+
917: 'comic book',
|
920 |
+
918: 'crossword puzzle, crossword',
|
921 |
+
919: 'street sign',
|
922 |
+
920: 'traffic light, traffic signal, stoplight',
|
923 |
+
921: 'book jacket, dust cover, dust jacket, dust wrapper',
|
924 |
+
922: 'menu',
|
925 |
+
923: 'plate',
|
926 |
+
924: 'guacamole',
|
927 |
+
925: 'consomme',
|
928 |
+
926: 'hot pot, hotpot',
|
929 |
+
927: 'trifle',
|
930 |
+
928: 'ice cream, icecream',
|
931 |
+
929: 'ice lolly, lolly, lollipop, popsicle',
|
932 |
+
930: 'French loaf',
|
933 |
+
931: 'bagel, beigel',
|
934 |
+
932: 'pretzel',
|
935 |
+
933: 'cheeseburger',
|
936 |
+
934: 'hotdog, hot dog, red hot',
|
937 |
+
935: 'mashed potato',
|
938 |
+
936: 'head cabbage',
|
939 |
+
937: 'broccoli',
|
940 |
+
938: 'cauliflower',
|
941 |
+
939: 'zucchini, courgette',
|
942 |
+
940: 'spaghetti squash',
|
943 |
+
941: 'acorn squash',
|
944 |
+
942: 'butternut squash',
|
945 |
+
943: 'cucumber, cuke',
|
946 |
+
944: 'artichoke, globe artichoke',
|
947 |
+
945: 'bell pepper',
|
948 |
+
946: 'cardoon',
|
949 |
+
947: 'mushroom',
|
950 |
+
948: 'Granny Smith',
|
951 |
+
949: 'strawberry',
|
952 |
+
950: 'orange',
|
953 |
+
951: 'lemon',
|
954 |
+
952: 'fig',
|
955 |
+
953: 'pineapple, ananas',
|
956 |
+
954: 'banana',
|
957 |
+
955: 'jackfruit, jak, jack',
|
958 |
+
956: 'custard apple',
|
959 |
+
957: 'pomegranate',
|
960 |
+
958: 'hay',
|
961 |
+
959: 'carbonara',
|
962 |
+
960: 'chocolate sauce, chocolate syrup',
|
963 |
+
961: 'dough',
|
964 |
+
962: 'meat loaf, meatloaf',
|
965 |
+
963: 'pizza, pizza pie',
|
966 |
+
964: 'potpie',
|
967 |
+
965: 'burrito',
|
968 |
+
966: 'red wine',
|
969 |
+
967: 'espresso',
|
970 |
+
968: 'cup',
|
971 |
+
969: 'eggnog',
|
972 |
+
970: 'alp',
|
973 |
+
971: 'bubble',
|
974 |
+
972: 'cliff, drop, drop-off',
|
975 |
+
973: 'coral reef',
|
976 |
+
974: 'geyser',
|
977 |
+
975: 'lakeside, lakeshore',
|
978 |
+
976: 'promontory, headland, head, foreland',
|
979 |
+
977: 'sandbar, sand bar',
|
980 |
+
978: 'seashore, coast, seacoast, sea-coast',
|
981 |
+
979: 'valley, vale',
|
982 |
+
980: 'volcano',
|
983 |
+
981: 'ballplayer, baseball player',
|
984 |
+
982: 'groom, bridegroom',
|
985 |
+
983: 'scuba diver',
|
986 |
+
984: 'rapeseed',
|
987 |
+
985: 'daisy',
|
988 |
+
986: "yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum",
|
989 |
+
987: 'corn',
|
990 |
+
988: 'acorn',
|
991 |
+
989: 'hip, rose hip, rosehip',
|
992 |
+
990: 'buckeye, horse chestnut, conker',
|
993 |
+
991: 'coral fungus',
|
994 |
+
992: 'agaric',
|
995 |
+
993: 'gyromitra',
|
996 |
+
994: 'stinkhorn, carrion fungus',
|
997 |
+
995: 'earthstar',
|
998 |
+
996: 'hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa',
|
999 |
+
997: 'bolete',
|
1000 |
+
998: 'ear, spike, capitulum',
|
1001 |
+
999: 'toilet tissue, toilet paper, bathroom tissue'
|
1002 |
+
}
|
concept_attention/binary_segmentation_baselines/chefer_vit_explainability/data/transforms.py
ADDED
@@ -0,0 +1,442 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import division
|
2 |
+
import sys
|
3 |
+
import random
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
try:
|
7 |
+
import accimage
|
8 |
+
except ImportError:
|
9 |
+
accimage = None
|
10 |
+
import numbers
|
11 |
+
import collections
|
12 |
+
|
13 |
+
from torchvision.transforms import functional as F
|
14 |
+
|
15 |
+
if sys.version_info < (3, 3):
|
16 |
+
Sequence = collections.Sequence
|
17 |
+
Iterable = collections.Iterable
|
18 |
+
else:
|
19 |
+
Sequence = collections.abc.Sequence
|
20 |
+
Iterable = collections.abc.Iterable
|
21 |
+
|
22 |
+
_pil_interpolation_to_str = {
|
23 |
+
Image.NEAREST: 'PIL.Image.NEAREST',
|
24 |
+
Image.BILINEAR: 'PIL.Image.BILINEAR',
|
25 |
+
Image.BICUBIC: 'PIL.Image.BICUBIC',
|
26 |
+
Image.LANCZOS: 'PIL.Image.LANCZOS',
|
27 |
+
Image.HAMMING: 'PIL.Image.HAMMING',
|
28 |
+
Image.BOX: 'PIL.Image.BOX',
|
29 |
+
}
|
30 |
+
|
31 |
+
|
32 |
+
class Compose(object):
|
33 |
+
"""Composes several transforms together.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
transforms (list of ``Transform`` objects): list of transforms to compose.
|
37 |
+
|
38 |
+
Example:
|
39 |
+
>>> transforms.Compose([
|
40 |
+
>>> transforms.CenterCrop(10),
|
41 |
+
>>> transforms.ToTensor(),
|
42 |
+
>>> ])
|
43 |
+
"""
|
44 |
+
|
45 |
+
def __init__(self, transforms):
|
46 |
+
self.transforms = transforms
|
47 |
+
|
48 |
+
def __call__(self, img, tgt):
|
49 |
+
for t in self.transforms:
|
50 |
+
img, tgt = t(img, tgt)
|
51 |
+
return img, tgt
|
52 |
+
|
53 |
+
def __repr__(self):
|
54 |
+
format_string = self.__class__.__name__ + '('
|
55 |
+
for t in self.transforms:
|
56 |
+
format_string += '\n'
|
57 |
+
format_string += ' {0}'.format(t)
|
58 |
+
format_string += '\n)'
|
59 |
+
return format_string
|
60 |
+
|
61 |
+
|
62 |
+
class Resize(object):
|
63 |
+
"""Resize the input PIL Image to the given size.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
size (sequence or int): Desired output size. If size is a sequence like
|
67 |
+
(h, w), output size will be matched to this. If size is an int,
|
68 |
+
smaller edge of the image will be matched to this number.
|
69 |
+
i.e, if height > width, then image will be rescaled to
|
70 |
+
(size * height / width, size)
|
71 |
+
interpolation (int, optional): Desired interpolation. Default is
|
72 |
+
``PIL.Image.BILINEAR``
|
73 |
+
"""
|
74 |
+
|
75 |
+
def __init__(self, size, interpolation=Image.BILINEAR):
|
76 |
+
assert isinstance(size, int) or (isinstance(size, Iterable) and len(size) == 2)
|
77 |
+
self.size = size
|
78 |
+
self.interpolation = interpolation
|
79 |
+
|
80 |
+
def __call__(self, img, tgt):
|
81 |
+
"""
|
82 |
+
Args:
|
83 |
+
img (PIL Image): Image to be scaled.
|
84 |
+
|
85 |
+
Returns:
|
86 |
+
PIL Image: Rescaled image.
|
87 |
+
"""
|
88 |
+
return F.resize(img, self.size, self.interpolation), F.resize(tgt, self.size, Image.NEAREST)
|
89 |
+
|
90 |
+
def __repr__(self):
|
91 |
+
interpolate_str = _pil_interpolation_to_str[self.interpolation]
|
92 |
+
return self.__class__.__name__ + '(size={0}, interpolation={1})'.format(self.size, interpolate_str)
|
93 |
+
|
94 |
+
|
95 |
+
class CenterCrop(object):
|
96 |
+
"""Crops the given PIL Image at the center.
|
97 |
+
|
98 |
+
Args:
|
99 |
+
size (sequence or int): Desired output size of the crop. If size is an
|
100 |
+
int instead of sequence like (h, w), a square crop (size, size) is
|
101 |
+
made.
|
102 |
+
"""
|
103 |
+
|
104 |
+
def __init__(self, size):
|
105 |
+
if isinstance(size, numbers.Number):
|
106 |
+
self.size = (int(size), int(size))
|
107 |
+
else:
|
108 |
+
self.size = size
|
109 |
+
|
110 |
+
def __call__(self, img, tgt):
|
111 |
+
"""
|
112 |
+
Args:
|
113 |
+
img (PIL Image): Image to be cropped.
|
114 |
+
|
115 |
+
Returns:
|
116 |
+
PIL Image: Cropped image.
|
117 |
+
"""
|
118 |
+
return F.center_crop(img, self.size), F.center_crop(tgt, self.size)
|
119 |
+
|
120 |
+
def __repr__(self):
|
121 |
+
return self.__class__.__name__ + '(size={0})'.format(self.size)
|
122 |
+
|
123 |
+
|
124 |
+
class RandomCrop(object):
|
125 |
+
"""Crop the given PIL Image at a random location.
|
126 |
+
|
127 |
+
Args:
|
128 |
+
size (sequence or int): Desired output size of the crop. If size is an
|
129 |
+
int instead of sequence like (h, w), a square crop (size, size) is
|
130 |
+
made.
|
131 |
+
padding (int or sequence, optional): Optional padding on each border
|
132 |
+
of the image. Default is None, i.e no padding. If a sequence of length
|
133 |
+
4 is provided, it is used to pad left, top, right, bottom borders
|
134 |
+
respectively. If a sequence of length 2 is provided, it is used to
|
135 |
+
pad left/right, top/bottom borders, respectively.
|
136 |
+
pad_if_needed (boolean): It will pad the image if smaller than the
|
137 |
+
desired size to avoid raising an exception.
|
138 |
+
fill: Pixel fill value for constant fill. Default is 0. If a tuple of
|
139 |
+
length 3, it is used to fill R, G, B channels respectively.
|
140 |
+
This value is only used when the padding_mode is constant
|
141 |
+
padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
|
142 |
+
|
143 |
+
- constant: pads with a constant value, this value is specified with fill
|
144 |
+
|
145 |
+
- edge: pads with the last value on the edge of the image
|
146 |
+
|
147 |
+
- reflect: pads with reflection of image (without repeating the last value on the edge)
|
148 |
+
|
149 |
+
padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
|
150 |
+
will result in [3, 2, 1, 2, 3, 4, 3, 2]
|
151 |
+
|
152 |
+
- symmetric: pads with reflection of image (repeating the last value on the edge)
|
153 |
+
|
154 |
+
padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
|
155 |
+
will result in [2, 1, 1, 2, 3, 4, 4, 3]
|
156 |
+
|
157 |
+
"""
|
158 |
+
|
159 |
+
def __init__(self, size, padding=None, pad_if_needed=False, fill=0, padding_mode='constant'):
|
160 |
+
if isinstance(size, numbers.Number):
|
161 |
+
self.size = (int(size), int(size))
|
162 |
+
else:
|
163 |
+
self.size = size
|
164 |
+
self.padding = padding
|
165 |
+
self.pad_if_needed = pad_if_needed
|
166 |
+
self.fill = fill
|
167 |
+
self.padding_mode = padding_mode
|
168 |
+
|
169 |
+
@staticmethod
|
170 |
+
def get_params(img, output_size):
|
171 |
+
"""Get parameters for ``crop`` for a random crop.
|
172 |
+
|
173 |
+
Args:
|
174 |
+
img (PIL Image): Image to be cropped.
|
175 |
+
output_size (tuple): Expected output size of the crop.
|
176 |
+
|
177 |
+
Returns:
|
178 |
+
tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
|
179 |
+
"""
|
180 |
+
w, h = img.size
|
181 |
+
th, tw = output_size
|
182 |
+
if w == tw and h == th:
|
183 |
+
return 0, 0, h, w
|
184 |
+
|
185 |
+
i = random.randint(0, h - th)
|
186 |
+
j = random.randint(0, w - tw)
|
187 |
+
return i, j, th, tw
|
188 |
+
|
189 |
+
def __call__(self, img, tgt):
|
190 |
+
"""
|
191 |
+
Args:
|
192 |
+
img (PIL Image): Image to be cropped.
|
193 |
+
|
194 |
+
Returns:
|
195 |
+
PIL Image: Cropped image.
|
196 |
+
"""
|
197 |
+
if self.padding is not None:
|
198 |
+
img = F.pad(img, self.padding, self.fill, self.padding_mode)
|
199 |
+
tgt = F.pad(tgt, self.padding, self.fill, self.padding_mode)
|
200 |
+
|
201 |
+
# pad the width if needed
|
202 |
+
if self.pad_if_needed and img.size[0] < self.size[1]:
|
203 |
+
img = F.pad(img, (self.size[1] - img.size[0], 0), self.fill, self.padding_mode)
|
204 |
+
tgt = F.pad(tgt, (self.size[1] - img.size[0], 0), self.fill, self.padding_mode)
|
205 |
+
# pad the height if needed
|
206 |
+
if self.pad_if_needed and img.size[1] < self.size[0]:
|
207 |
+
img = F.pad(img, (0, self.size[0] - img.size[1]), self.fill, self.padding_mode)
|
208 |
+
tgt = F.pad(tgt, (0, self.size[0] - img.size[1]), self.fill, self.padding_mode)
|
209 |
+
|
210 |
+
i, j, h, w = self.get_params(img, self.size)
|
211 |
+
|
212 |
+
return F.crop(img, i, j, h, w), F.crop(tgt, i, j, h, w)
|
213 |
+
|
214 |
+
def __repr__(self):
|
215 |
+
return self.__class__.__name__ + '(size={0}, padding={1})'.format(self.size, self.padding)
|
216 |
+
|
217 |
+
|
218 |
+
class RandomHorizontalFlip(object):
|
219 |
+
"""Horizontally flip the given PIL Image randomly with a given probability.
|
220 |
+
|
221 |
+
Args:
|
222 |
+
p (float): probability of the image being flipped. Default value is 0.5
|
223 |
+
"""
|
224 |
+
|
225 |
+
def __init__(self, p=0.5):
|
226 |
+
self.p = p
|
227 |
+
|
228 |
+
def __call__(self, img, tgt):
|
229 |
+
"""
|
230 |
+
Args:
|
231 |
+
img (PIL Image): Image to be flipped.
|
232 |
+
|
233 |
+
Returns:
|
234 |
+
PIL Image: Randomly flipped image.
|
235 |
+
"""
|
236 |
+
if random.random() < self.p:
|
237 |
+
return F.hflip(img), F.hflip(tgt)
|
238 |
+
|
239 |
+
return img, tgt
|
240 |
+
|
241 |
+
def __repr__(self):
|
242 |
+
return self.__class__.__name__ + '(p={})'.format(self.p)
|
243 |
+
|
244 |
+
|
245 |
+
class RandomVerticalFlip(object):
|
246 |
+
"""Vertically flip the given PIL Image randomly with a given probability.
|
247 |
+
|
248 |
+
Args:
|
249 |
+
p (float): probability of the image being flipped. Default value is 0.5
|
250 |
+
"""
|
251 |
+
|
252 |
+
def __init__(self, p=0.5):
|
253 |
+
self.p = p
|
254 |
+
|
255 |
+
def __call__(self, img, tgt):
|
256 |
+
"""
|
257 |
+
Args:
|
258 |
+
img (PIL Image): Image to be flipped.
|
259 |
+
|
260 |
+
Returns:
|
261 |
+
PIL Image: Randomly flipped image.
|
262 |
+
"""
|
263 |
+
if random.random() < self.p:
|
264 |
+
return F.vflip(img), F.vflip(tgt)
|
265 |
+
return img, tgt
|
266 |
+
|
267 |
+
def __repr__(self):
|
268 |
+
return self.__class__.__name__ + '(p={})'.format(self.p)
|
269 |
+
|
270 |
+
|
271 |
+
class Lambda(object):
|
272 |
+
"""Apply a user-defined lambda as a transform.
|
273 |
+
|
274 |
+
Args:
|
275 |
+
lambd (function): Lambda/function to be used for transform.
|
276 |
+
"""
|
277 |
+
|
278 |
+
def __init__(self, lambd):
|
279 |
+
assert callable(lambd), repr(type(lambd).__name__) + " object is not callable"
|
280 |
+
self.lambd = lambd
|
281 |
+
|
282 |
+
def __call__(self, img, tgt):
|
283 |
+
return self.lambd(img, tgt)
|
284 |
+
|
285 |
+
def __repr__(self):
|
286 |
+
return self.__class__.__name__ + '()'
|
287 |
+
|
288 |
+
|
289 |
+
class ColorJitter(object):
|
290 |
+
"""Randomly change the brightness, contrast and saturation of an image.
|
291 |
+
|
292 |
+
Args:
|
293 |
+
brightness (float or tuple of float (min, max)): How much to jitter brightness.
|
294 |
+
brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]
|
295 |
+
or the given [min, max]. Should be non negative numbers.
|
296 |
+
contrast (float or tuple of float (min, max)): How much to jitter contrast.
|
297 |
+
contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]
|
298 |
+
or the given [min, max]. Should be non negative numbers.
|
299 |
+
saturation (float or tuple of float (min, max)): How much to jitter saturation.
|
300 |
+
saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]
|
301 |
+
or the given [min, max]. Should be non negative numbers.
|
302 |
+
hue (float or tuple of float (min, max)): How much to jitter hue.
|
303 |
+
hue_factor is chosen uniformly from [-hue, hue] or the given [min, max].
|
304 |
+
Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5.
|
305 |
+
"""
|
306 |
+
def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
|
307 |
+
self.brightness = self._check_input(brightness, 'brightness')
|
308 |
+
self.contrast = self._check_input(contrast, 'contrast')
|
309 |
+
self.saturation = self._check_input(saturation, 'saturation')
|
310 |
+
self.hue = self._check_input(hue, 'hue', center=0, bound=(-0.5, 0.5),
|
311 |
+
clip_first_on_zero=False)
|
312 |
+
|
313 |
+
def _check_input(self, value, name, center=1, bound=(0, float('inf')), clip_first_on_zero=True):
|
314 |
+
if isinstance(value, numbers.Number):
|
315 |
+
if value < 0:
|
316 |
+
raise ValueError("If {} is a single number, it must be non negative.".format(name))
|
317 |
+
value = [center - value, center + value]
|
318 |
+
if clip_first_on_zero:
|
319 |
+
value[0] = max(value[0], 0)
|
320 |
+
elif isinstance(value, (tuple, list)) and len(value) == 2:
|
321 |
+
if not bound[0] <= value[0] <= value[1] <= bound[1]:
|
322 |
+
raise ValueError("{} values should be between {}".format(name, bound))
|
323 |
+
else:
|
324 |
+
raise TypeError("{} should be a single number or a list/tuple with lenght 2.".format(name))
|
325 |
+
|
326 |
+
# if value is 0 or (1., 1.) for brightness/contrast/saturation
|
327 |
+
# or (0., 0.) for hue, do nothing
|
328 |
+
if value[0] == value[1] == center:
|
329 |
+
value = None
|
330 |
+
return value
|
331 |
+
|
332 |
+
@staticmethod
|
333 |
+
def get_params(brightness, contrast, saturation, hue):
|
334 |
+
"""Get a randomized transform to be applied on image.
|
335 |
+
|
336 |
+
Arguments are same as that of __init__.
|
337 |
+
|
338 |
+
Returns:
|
339 |
+
Transform which randomly adjusts brightness, contrast and
|
340 |
+
saturation in a random order.
|
341 |
+
"""
|
342 |
+
transforms = []
|
343 |
+
|
344 |
+
if brightness is not None:
|
345 |
+
brightness_factor = random.uniform(brightness[0], brightness[1])
|
346 |
+
transforms.append(Lambda(lambda img, tgt: (F.adjust_brightness(img, brightness_factor), tgt)))
|
347 |
+
|
348 |
+
if contrast is not None:
|
349 |
+
contrast_factor = random.uniform(contrast[0], contrast[1])
|
350 |
+
transforms.append(Lambda(lambda img, tgt: (F.adjust_contrast(img, contrast_factor), tgt)))
|
351 |
+
|
352 |
+
if saturation is not None:
|
353 |
+
saturation_factor = random.uniform(saturation[0], saturation[1])
|
354 |
+
transforms.append(Lambda(lambda img, tgt: (F.adjust_saturation(img, saturation_factor), tgt)))
|
355 |
+
|
356 |
+
if hue is not None:
|
357 |
+
hue_factor = random.uniform(hue[0], hue[1])
|
358 |
+
transforms.append(Lambda(lambda img, tgt: (F.adjust_hue(img, hue_factor), tgt)))
|
359 |
+
|
360 |
+
random.shuffle(transforms)
|
361 |
+
transform = Compose(transforms)
|
362 |
+
|
363 |
+
return transform
|
364 |
+
|
365 |
+
def __call__(self, img, tgt):
|
366 |
+
"""
|
367 |
+
Args:
|
368 |
+
img (PIL Image): Input image.
|
369 |
+
|
370 |
+
Returns:
|
371 |
+
PIL Image: Color jittered image.
|
372 |
+
"""
|
373 |
+
transform = self.get_params(self.brightness, self.contrast,
|
374 |
+
self.saturation, self.hue)
|
375 |
+
return transform(img, tgt)
|
376 |
+
|
377 |
+
def __repr__(self):
|
378 |
+
format_string = self.__class__.__name__ + '('
|
379 |
+
format_string += 'brightness={0}'.format(self.brightness)
|
380 |
+
format_string += ', contrast={0}'.format(self.contrast)
|
381 |
+
format_string += ', saturation={0}'.format(self.saturation)
|
382 |
+
format_string += ', hue={0})'.format(self.hue)
|
383 |
+
return format_string
|
384 |
+
|
385 |
+
|
386 |
+
class Normalize(object):
|
387 |
+
"""Normalize a tensor image with mean and standard deviation.
|
388 |
+
Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels, this transform
|
389 |
+
will normalize each channel of the input ``torch.*Tensor`` i.e.
|
390 |
+
``input[channel] = (input[channel] - mean[channel]) / std[channel]``
|
391 |
+
|
392 |
+
.. note::
|
393 |
+
This transform acts out of place, i.e., it does not mutates the input tensor.
|
394 |
+
|
395 |
+
Args:
|
396 |
+
mean (sequence): Sequence of means for each channel.
|
397 |
+
std (sequence): Sequence of standard deviations for each channel.
|
398 |
+
"""
|
399 |
+
|
400 |
+
def __init__(self, mean, std, inplace=False):
|
401 |
+
self.mean = mean
|
402 |
+
self.std = std
|
403 |
+
self.inplace = inplace
|
404 |
+
|
405 |
+
def __call__(self, img, tgt):
|
406 |
+
"""
|
407 |
+
Args:
|
408 |
+
tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
|
409 |
+
|
410 |
+
Returns:
|
411 |
+
Tensor: Normalized Tensor image.
|
412 |
+
"""
|
413 |
+
# return F.normalize(img, self.mean, self.std, self.inplace), tgt
|
414 |
+
return F.normalize(img, self.mean, self.std), tgt
|
415 |
+
|
416 |
+
def __repr__(self):
|
417 |
+
return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)
|
418 |
+
|
419 |
+
|
420 |
+
class ToTensor(object):
|
421 |
+
"""Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.
|
422 |
+
|
423 |
+
Converts a PIL Image or numpy.ndarray (H x W x C) in the range
|
424 |
+
[0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
|
425 |
+
if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
|
426 |
+
or if the numpy.ndarray has dtype = np.uint8
|
427 |
+
|
428 |
+
In the other cases, tensors are returned without scaling.
|
429 |
+
"""
|
430 |
+
|
431 |
+
def __call__(self, img, tgt):
|
432 |
+
"""
|
433 |
+
Args:
|
434 |
+
pic (PIL Image or numpy.ndarray): Image to be converted to tensor.
|
435 |
+
|
436 |
+
Returns:
|
437 |
+
Tensor: Converted image.
|
438 |
+
"""
|
439 |
+
return F.to_tensor(img), tgt
|
440 |
+
|
441 |
+
def __repr__(self):
|
442 |
+
return self.__class__.__name__ + '()'
|
concept_attention/binary_segmentation_baselines/chefer_vit_explainability/generate_visualizations.py
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from tqdm import tqdm
|
3 |
+
import h5py
|
4 |
+
|
5 |
+
import argparse
|
6 |
+
|
7 |
+
# Import saliency methods and models
|
8 |
+
from misc_functions import *
|
9 |
+
|
10 |
+
from ViT_explanation_generator import Baselines, LRP
|
11 |
+
from ViT_new import vit_base_patch16_224
|
12 |
+
from ViT_LRP import vit_base_patch16_224 as vit_LRP
|
13 |
+
from ViT_orig_LRP import vit_base_patch16_224 as vit_orig_LRP
|
14 |
+
|
15 |
+
from torchvision.datasets import ImageNet
|
16 |
+
|
17 |
+
|
18 |
+
def normalize(tensor,
|
19 |
+
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]):
|
20 |
+
dtype = tensor.dtype
|
21 |
+
mean = torch.as_tensor(mean, dtype=dtype, device=tensor.device)
|
22 |
+
std = torch.as_tensor(std, dtype=dtype, device=tensor.device)
|
23 |
+
tensor.sub_(mean[None, :, None, None]).div_(std[None, :, None, None])
|
24 |
+
return tensor
|
25 |
+
|
26 |
+
|
27 |
+
def compute_saliency_and_save(args):
|
28 |
+
first = True
|
29 |
+
with h5py.File(os.path.join(args.method_dir, 'results.hdf5'), 'a') as f:
|
30 |
+
data_cam = f.create_dataset('vis',
|
31 |
+
(1, 1, 224, 224),
|
32 |
+
maxshape=(None, 1, 224, 224),
|
33 |
+
dtype=np.float32,
|
34 |
+
compression="gzip")
|
35 |
+
data_image = f.create_dataset('image',
|
36 |
+
(1, 3, 224, 224),
|
37 |
+
maxshape=(None, 3, 224, 224),
|
38 |
+
dtype=np.float32,
|
39 |
+
compression="gzip")
|
40 |
+
data_target = f.create_dataset('target',
|
41 |
+
(1,),
|
42 |
+
maxshape=(None,),
|
43 |
+
dtype=np.int32,
|
44 |
+
compression="gzip")
|
45 |
+
for batch_idx, (data, target) in enumerate(tqdm(sample_loader)):
|
46 |
+
if first:
|
47 |
+
first = False
|
48 |
+
data_cam.resize(data_cam.shape[0] + data.shape[0] - 1, axis=0)
|
49 |
+
data_image.resize(data_image.shape[0] + data.shape[0] - 1, axis=0)
|
50 |
+
data_target.resize(data_target.shape[0] + data.shape[0] - 1, axis=0)
|
51 |
+
else:
|
52 |
+
data_cam.resize(data_cam.shape[0] + data.shape[0], axis=0)
|
53 |
+
data_image.resize(data_image.shape[0] + data.shape[0], axis=0)
|
54 |
+
data_target.resize(data_target.shape[0] + data.shape[0], axis=0)
|
55 |
+
|
56 |
+
# Add data
|
57 |
+
data_image[-data.shape[0]:] = data.data.cpu().numpy()
|
58 |
+
data_target[-data.shape[0]:] = target.data.cpu().numpy()
|
59 |
+
|
60 |
+
target = target.to(device)
|
61 |
+
|
62 |
+
data = normalize(data)
|
63 |
+
data = data.to(device)
|
64 |
+
data.requires_grad_()
|
65 |
+
|
66 |
+
index = None
|
67 |
+
if args.vis_class == 'target':
|
68 |
+
index = target
|
69 |
+
|
70 |
+
if args.method == 'rollout':
|
71 |
+
Res = baselines.generate_rollout(data, start_layer=1).reshape(data.shape[0], 1, 14, 14)
|
72 |
+
# Res = Res - Res.mean()
|
73 |
+
|
74 |
+
elif args.method == 'lrp':
|
75 |
+
Res = lrp.generate_LRP(data, start_layer=1, index=index).reshape(data.shape[0], 1, 14, 14)
|
76 |
+
# Res = Res - Res.mean()
|
77 |
+
|
78 |
+
elif args.method == 'transformer_attribution':
|
79 |
+
Res = lrp.generate_LRP(data, start_layer=1, method="grad", index=index).reshape(data.shape[0], 1, 14, 14)
|
80 |
+
# Res = Res - Res.mean()
|
81 |
+
|
82 |
+
elif args.method == 'full_lrp':
|
83 |
+
Res = orig_lrp.generate_LRP(data, method="full", index=index).reshape(data.shape[0], 1, 224, 224)
|
84 |
+
# Res = Res - Res.mean()
|
85 |
+
|
86 |
+
elif args.method == 'lrp_last_layer':
|
87 |
+
Res = orig_lrp.generate_LRP(data, method="last_layer", is_ablation=args.is_ablation, index=index) \
|
88 |
+
.reshape(data.shape[0], 1, 14, 14)
|
89 |
+
# Res = Res - Res.mean()
|
90 |
+
|
91 |
+
elif args.method == 'attn_last_layer':
|
92 |
+
Res = lrp.generate_LRP(data, method="last_layer_attn", is_ablation=args.is_ablation) \
|
93 |
+
.reshape(data.shape[0], 1, 14, 14)
|
94 |
+
|
95 |
+
elif args.method == 'attn_gradcam':
|
96 |
+
Res = baselines.generate_cam_attn(data, index=index).reshape(data.shape[0], 1, 14, 14)
|
97 |
+
|
98 |
+
if args.method != 'full_lrp' and args.method != 'input_grads':
|
99 |
+
Res = torch.nn.functional.interpolate(Res, scale_factor=16, mode='bilinear').cuda()
|
100 |
+
Res = (Res - Res.min()) / (Res.max() - Res.min())
|
101 |
+
|
102 |
+
data_cam[-data.shape[0]:] = Res.data.cpu().numpy()
|
103 |
+
|
104 |
+
|
105 |
+
if __name__ == "__main__":
|
106 |
+
parser = argparse.ArgumentParser(description='Train a segmentation')
|
107 |
+
parser.add_argument('--batch-size', type=int,
|
108 |
+
default=1,
|
109 |
+
help='')
|
110 |
+
parser.add_argument('--method', type=str,
|
111 |
+
default='grad_rollout',
|
112 |
+
choices=['rollout', 'lrp', 'transformer_attribution', 'full_lrp', 'lrp_last_layer',
|
113 |
+
'attn_last_layer', 'attn_gradcam'],
|
114 |
+
help='')
|
115 |
+
parser.add_argument('--lmd', type=float,
|
116 |
+
default=10,
|
117 |
+
help='')
|
118 |
+
parser.add_argument('--vis-class', type=str,
|
119 |
+
default='top',
|
120 |
+
choices=['top', 'target', 'index'],
|
121 |
+
help='')
|
122 |
+
parser.add_argument('--class-id', type=int,
|
123 |
+
default=0,
|
124 |
+
help='')
|
125 |
+
parser.add_argument('--cls-agn', action='store_true',
|
126 |
+
default=False,
|
127 |
+
help='')
|
128 |
+
parser.add_argument('--no-ia', action='store_true',
|
129 |
+
default=False,
|
130 |
+
help='')
|
131 |
+
parser.add_argument('--no-fx', action='store_true',
|
132 |
+
default=False,
|
133 |
+
help='')
|
134 |
+
parser.add_argument('--no-fgx', action='store_true',
|
135 |
+
default=False,
|
136 |
+
help='')
|
137 |
+
parser.add_argument('--no-m', action='store_true',
|
138 |
+
default=False,
|
139 |
+
help='')
|
140 |
+
parser.add_argument('--no-reg', action='store_true',
|
141 |
+
default=False,
|
142 |
+
help='')
|
143 |
+
parser.add_argument('--is-ablation', type=bool,
|
144 |
+
default=False,
|
145 |
+
help='')
|
146 |
+
parser.add_argument('--imagenet-validation-path', type=str,
|
147 |
+
required=True,
|
148 |
+
help='')
|
149 |
+
args = parser.parse_args()
|
150 |
+
|
151 |
+
# PATH variables
|
152 |
+
PATH = os.path.dirname(os.path.abspath(__file__)) + '/'
|
153 |
+
os.makedirs(os.path.join(PATH, 'visualizations'), exist_ok=True)
|
154 |
+
|
155 |
+
try:
|
156 |
+
os.remove(os.path.join(PATH, 'visualizations/{}/{}/results.hdf5'.format(args.method,
|
157 |
+
args.vis_class)))
|
158 |
+
except OSError:
|
159 |
+
pass
|
160 |
+
|
161 |
+
|
162 |
+
os.makedirs(os.path.join(PATH, 'visualizations/{}'.format(args.method)), exist_ok=True)
|
163 |
+
if args.vis_class == 'index':
|
164 |
+
os.makedirs(os.path.join(PATH, 'visualizations/{}/{}_{}'.format(args.method,
|
165 |
+
args.vis_class,
|
166 |
+
args.class_id)), exist_ok=True)
|
167 |
+
args.method_dir = os.path.join(PATH, 'visualizations/{}/{}_{}'.format(args.method,
|
168 |
+
args.vis_class,
|
169 |
+
args.class_id))
|
170 |
+
else:
|
171 |
+
ablation_fold = 'ablation' if args.is_ablation else 'not_ablation'
|
172 |
+
os.makedirs(os.path.join(PATH, 'visualizations/{}/{}/{}'.format(args.method,
|
173 |
+
args.vis_class, ablation_fold)), exist_ok=True)
|
174 |
+
args.method_dir = os.path.join(PATH, 'visualizations/{}/{}/{}'.format(args.method,
|
175 |
+
args.vis_class, ablation_fold))
|
176 |
+
|
177 |
+
cuda = torch.cuda.is_available()
|
178 |
+
device = torch.device("cuda" if cuda else "cpu")
|
179 |
+
|
180 |
+
# Model
|
181 |
+
model = vit_base_patch16_224(pretrained=True).cuda()
|
182 |
+
baselines = Baselines(model)
|
183 |
+
|
184 |
+
# LRP
|
185 |
+
model_LRP = vit_LRP(pretrained=True).cuda()
|
186 |
+
model_LRP.eval()
|
187 |
+
lrp = LRP(model_LRP)
|
188 |
+
|
189 |
+
# orig LRP
|
190 |
+
model_orig_LRP = vit_orig_LRP(pretrained=True).cuda()
|
191 |
+
model_orig_LRP.eval()
|
192 |
+
orig_lrp = LRP(model_orig_LRP)
|
193 |
+
|
194 |
+
# Dataset loader for sample images
|
195 |
+
transform = transforms.Compose([
|
196 |
+
transforms.Resize((224, 224)),
|
197 |
+
transforms.ToTensor(),
|
198 |
+
])
|
199 |
+
|
200 |
+
imagenet_ds = ImageNet(args.imagenet_validation_path, split='val', download=False, transform=transform)
|
201 |
+
sample_loader = torch.utils.data.DataLoader(
|
202 |
+
imagenet_ds,
|
203 |
+
batch_size=args.batch_size,
|
204 |
+
shuffle=False,
|
205 |
+
num_workers=4
|
206 |
+
)
|
207 |
+
|
208 |
+
compute_saliency_and_save(args)
|
concept_attention/binary_segmentation_baselines/chefer_vit_explainability/helpers.py
ADDED
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Model creation / weight loading / state_dict helpers
|
2 |
+
|
3 |
+
Hacked together by / Copyright 2020 Ross Wightman
|
4 |
+
"""
|
5 |
+
import logging
|
6 |
+
import os
|
7 |
+
import math
|
8 |
+
from collections import OrderedDict
|
9 |
+
from copy import deepcopy
|
10 |
+
from typing import Callable
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torch.nn as nn
|
14 |
+
import torch.utils.model_zoo as model_zoo
|
15 |
+
|
16 |
+
_logger = logging.getLogger(__name__)
|
17 |
+
|
18 |
+
|
19 |
+
def load_state_dict(checkpoint_path, use_ema=False):
|
20 |
+
if checkpoint_path and os.path.isfile(checkpoint_path):
|
21 |
+
checkpoint = torch.load(checkpoint_path, map_location='cpu')
|
22 |
+
state_dict_key = 'state_dict'
|
23 |
+
if isinstance(checkpoint, dict):
|
24 |
+
if use_ema and 'state_dict_ema' in checkpoint:
|
25 |
+
state_dict_key = 'state_dict_ema'
|
26 |
+
if state_dict_key and state_dict_key in checkpoint:
|
27 |
+
new_state_dict = OrderedDict()
|
28 |
+
for k, v in checkpoint[state_dict_key].items():
|
29 |
+
# strip `module.` prefix
|
30 |
+
name = k[7:] if k.startswith('module') else k
|
31 |
+
new_state_dict[name] = v
|
32 |
+
state_dict = new_state_dict
|
33 |
+
else:
|
34 |
+
state_dict = checkpoint
|
35 |
+
_logger.info("Loaded {} from checkpoint '{}'".format(state_dict_key, checkpoint_path))
|
36 |
+
return state_dict
|
37 |
+
else:
|
38 |
+
_logger.error("No checkpoint found at '{}'".format(checkpoint_path))
|
39 |
+
raise FileNotFoundError()
|
40 |
+
|
41 |
+
|
42 |
+
def load_checkpoint(model, checkpoint_path, use_ema=False, strict=True):
|
43 |
+
state_dict = load_state_dict(checkpoint_path, use_ema)
|
44 |
+
model.load_state_dict(state_dict, strict=strict)
|
45 |
+
|
46 |
+
|
47 |
+
def resume_checkpoint(model, checkpoint_path, optimizer=None, loss_scaler=None, log_info=True):
|
48 |
+
resume_epoch = None
|
49 |
+
if os.path.isfile(checkpoint_path):
|
50 |
+
checkpoint = torch.load(checkpoint_path, map_location='cpu')
|
51 |
+
if isinstance(checkpoint, dict) and 'state_dict' in checkpoint:
|
52 |
+
if log_info:
|
53 |
+
_logger.info('Restoring model state from checkpoint...')
|
54 |
+
new_state_dict = OrderedDict()
|
55 |
+
for k, v in checkpoint['state_dict'].items():
|
56 |
+
name = k[7:] if k.startswith('module') else k
|
57 |
+
new_state_dict[name] = v
|
58 |
+
model.load_state_dict(new_state_dict)
|
59 |
+
|
60 |
+
if optimizer is not None and 'optimizer' in checkpoint:
|
61 |
+
if log_info:
|
62 |
+
_logger.info('Restoring optimizer state from checkpoint...')
|
63 |
+
optimizer.load_state_dict(checkpoint['optimizer'])
|
64 |
+
|
65 |
+
if loss_scaler is not None and loss_scaler.state_dict_key in checkpoint:
|
66 |
+
if log_info:
|
67 |
+
_logger.info('Restoring AMP loss scaler state from checkpoint...')
|
68 |
+
loss_scaler.load_state_dict(checkpoint[loss_scaler.state_dict_key])
|
69 |
+
|
70 |
+
if 'epoch' in checkpoint:
|
71 |
+
resume_epoch = checkpoint['epoch']
|
72 |
+
if 'version' in checkpoint and checkpoint['version'] > 1:
|
73 |
+
resume_epoch += 1 # start at the next epoch, old checkpoints incremented before save
|
74 |
+
|
75 |
+
if log_info:
|
76 |
+
_logger.info("Loaded checkpoint '{}' (epoch {})".format(checkpoint_path, checkpoint['epoch']))
|
77 |
+
else:
|
78 |
+
model.load_state_dict(checkpoint)
|
79 |
+
if log_info:
|
80 |
+
_logger.info("Loaded checkpoint '{}'".format(checkpoint_path))
|
81 |
+
return resume_epoch
|
82 |
+
else:
|
83 |
+
_logger.error("No checkpoint found at '{}'".format(checkpoint_path))
|
84 |
+
raise FileNotFoundError()
|
85 |
+
|
86 |
+
|
87 |
+
def load_pretrained(model, cfg=None, num_classes=1000, in_chans=3, filter_fn=None, strict=True):
|
88 |
+
if cfg is None:
|
89 |
+
cfg = getattr(model, 'default_cfg')
|
90 |
+
if cfg is None or 'url' not in cfg or not cfg['url']:
|
91 |
+
_logger.warning("Pretrained model URL is invalid, using random initialization.")
|
92 |
+
return
|
93 |
+
|
94 |
+
state_dict = model_zoo.load_url(cfg['url'], progress=False, map_location='cpu')
|
95 |
+
|
96 |
+
if filter_fn is not None:
|
97 |
+
state_dict = filter_fn(state_dict)
|
98 |
+
|
99 |
+
if in_chans == 1:
|
100 |
+
conv1_name = cfg['first_conv']
|
101 |
+
_logger.info('Converting first conv (%s) pretrained weights from 3 to 1 channel' % conv1_name)
|
102 |
+
conv1_weight = state_dict[conv1_name + '.weight']
|
103 |
+
# Some weights are in torch.half, ensure it's float for sum on CPU
|
104 |
+
conv1_type = conv1_weight.dtype
|
105 |
+
conv1_weight = conv1_weight.float()
|
106 |
+
O, I, J, K = conv1_weight.shape
|
107 |
+
if I > 3:
|
108 |
+
assert conv1_weight.shape[1] % 3 == 0
|
109 |
+
# For models with space2depth stems
|
110 |
+
conv1_weight = conv1_weight.reshape(O, I // 3, 3, J, K)
|
111 |
+
conv1_weight = conv1_weight.sum(dim=2, keepdim=False)
|
112 |
+
else:
|
113 |
+
conv1_weight = conv1_weight.sum(dim=1, keepdim=True)
|
114 |
+
conv1_weight = conv1_weight.to(conv1_type)
|
115 |
+
state_dict[conv1_name + '.weight'] = conv1_weight
|
116 |
+
elif in_chans != 3:
|
117 |
+
conv1_name = cfg['first_conv']
|
118 |
+
conv1_weight = state_dict[conv1_name + '.weight']
|
119 |
+
conv1_type = conv1_weight.dtype
|
120 |
+
conv1_weight = conv1_weight.float()
|
121 |
+
O, I, J, K = conv1_weight.shape
|
122 |
+
if I != 3:
|
123 |
+
_logger.warning('Deleting first conv (%s) from pretrained weights.' % conv1_name)
|
124 |
+
del state_dict[conv1_name + '.weight']
|
125 |
+
strict = False
|
126 |
+
else:
|
127 |
+
# NOTE this strategy should be better than random init, but there could be other combinations of
|
128 |
+
# the original RGB input layer weights that'd work better for specific cases.
|
129 |
+
_logger.info('Repeating first conv (%s) weights in channel dim.' % conv1_name)
|
130 |
+
repeat = int(math.ceil(in_chans / 3))
|
131 |
+
conv1_weight = conv1_weight.repeat(1, repeat, 1, 1)[:, :in_chans, :, :]
|
132 |
+
conv1_weight *= (3 / float(in_chans))
|
133 |
+
conv1_weight = conv1_weight.to(conv1_type)
|
134 |
+
state_dict[conv1_name + '.weight'] = conv1_weight
|
135 |
+
|
136 |
+
classifier_name = cfg['classifier']
|
137 |
+
if num_classes == 1000 and cfg['num_classes'] == 1001:
|
138 |
+
# special case for imagenet trained models with extra background class in pretrained weights
|
139 |
+
classifier_weight = state_dict[classifier_name + '.weight']
|
140 |
+
state_dict[classifier_name + '.weight'] = classifier_weight[1:]
|
141 |
+
classifier_bias = state_dict[classifier_name + '.bias']
|
142 |
+
state_dict[classifier_name + '.bias'] = classifier_bias[1:]
|
143 |
+
elif num_classes != cfg['num_classes']:
|
144 |
+
# completely discard fully connected for all other differences between pretrained and created model
|
145 |
+
del state_dict[classifier_name + '.weight']
|
146 |
+
del state_dict[classifier_name + '.bias']
|
147 |
+
strict = False
|
148 |
+
|
149 |
+
model.load_state_dict(state_dict, strict=strict)
|
150 |
+
|
151 |
+
|
152 |
+
def extract_layer(model, layer):
|
153 |
+
layer = layer.split('.')
|
154 |
+
module = model
|
155 |
+
if hasattr(model, 'module') and layer[0] != 'module':
|
156 |
+
module = model.module
|
157 |
+
if not hasattr(model, 'module') and layer[0] == 'module':
|
158 |
+
layer = layer[1:]
|
159 |
+
for l in layer:
|
160 |
+
if hasattr(module, l):
|
161 |
+
if not l.isdigit():
|
162 |
+
module = getattr(module, l)
|
163 |
+
else:
|
164 |
+
module = module[int(l)]
|
165 |
+
else:
|
166 |
+
return module
|
167 |
+
return module
|
168 |
+
|
169 |
+
|
170 |
+
def set_layer(model, layer, val):
|
171 |
+
layer = layer.split('.')
|
172 |
+
module = model
|
173 |
+
if hasattr(model, 'module') and layer[0] != 'module':
|
174 |
+
module = model.module
|
175 |
+
lst_index = 0
|
176 |
+
module2 = module
|
177 |
+
for l in layer:
|
178 |
+
if hasattr(module2, l):
|
179 |
+
if not l.isdigit():
|
180 |
+
module2 = getattr(module2, l)
|
181 |
+
else:
|
182 |
+
module2 = module2[int(l)]
|
183 |
+
lst_index += 1
|
184 |
+
lst_index -= 1
|
185 |
+
for l in layer[:lst_index]:
|
186 |
+
if not l.isdigit():
|
187 |
+
module = getattr(module, l)
|
188 |
+
else:
|
189 |
+
module = module[int(l)]
|
190 |
+
l = layer[lst_index]
|
191 |
+
setattr(module, l, val)
|
192 |
+
|
193 |
+
|
194 |
+
def adapt_model_from_string(parent_module, model_string):
|
195 |
+
separator = '***'
|
196 |
+
state_dict = {}
|
197 |
+
lst_shape = model_string.split(separator)
|
198 |
+
for k in lst_shape:
|
199 |
+
k = k.split(':')
|
200 |
+
key = k[0]
|
201 |
+
shape = k[1][1:-1].split(',')
|
202 |
+
if shape[0] != '':
|
203 |
+
state_dict[key] = [int(i) for i in shape]
|
204 |
+
|
205 |
+
new_module = deepcopy(parent_module)
|
206 |
+
for n, m in parent_module.named_modules():
|
207 |
+
old_module = extract_layer(parent_module, n)
|
208 |
+
if isinstance(old_module, nn.Conv2d) or isinstance(old_module, Conv2dSame):
|
209 |
+
if isinstance(old_module, Conv2dSame):
|
210 |
+
conv = Conv2dSame
|
211 |
+
else:
|
212 |
+
conv = nn.Conv2d
|
213 |
+
s = state_dict[n + '.weight']
|
214 |
+
in_channels = s[1]
|
215 |
+
out_channels = s[0]
|
216 |
+
g = 1
|
217 |
+
if old_module.groups > 1:
|
218 |
+
in_channels = out_channels
|
219 |
+
g = in_channels
|
220 |
+
new_conv = conv(
|
221 |
+
in_channels=in_channels, out_channels=out_channels, kernel_size=old_module.kernel_size,
|
222 |
+
bias=old_module.bias is not None, padding=old_module.padding, dilation=old_module.dilation,
|
223 |
+
groups=g, stride=old_module.stride)
|
224 |
+
set_layer(new_module, n, new_conv)
|
225 |
+
if isinstance(old_module, nn.BatchNorm2d):
|
226 |
+
new_bn = nn.BatchNorm2d(
|
227 |
+
num_features=state_dict[n + '.weight'][0], eps=old_module.eps, momentum=old_module.momentum,
|
228 |
+
affine=old_module.affine, track_running_stats=True)
|
229 |
+
set_layer(new_module, n, new_bn)
|
230 |
+
if isinstance(old_module, nn.Linear):
|
231 |
+
# FIXME extra checks to ensure this is actually the FC classifier layer and not a diff Linear layer?
|
232 |
+
num_features = state_dict[n + '.weight'][1]
|
233 |
+
new_fc = nn.Linear(
|
234 |
+
in_features=num_features, out_features=old_module.out_features, bias=old_module.bias is not None)
|
235 |
+
set_layer(new_module, n, new_fc)
|
236 |
+
if hasattr(new_module, 'num_features'):
|
237 |
+
new_module.num_features = num_features
|
238 |
+
new_module.eval()
|
239 |
+
parent_module.eval()
|
240 |
+
|
241 |
+
return new_module
|
242 |
+
|
243 |
+
|
244 |
+
def adapt_model_from_file(parent_module, model_variant):
|
245 |
+
adapt_file = os.path.join(os.path.dirname(__file__), 'pruned', model_variant + '.txt')
|
246 |
+
with open(adapt_file, 'r') as f:
|
247 |
+
return adapt_model_from_string(parent_module, f.read().strip())
|
248 |
+
|
249 |
+
|
250 |
+
def build_model_with_cfg(
|
251 |
+
model_cls: Callable,
|
252 |
+
variant: str,
|
253 |
+
pretrained: bool,
|
254 |
+
default_cfg: dict,
|
255 |
+
model_cfg: dict = None,
|
256 |
+
feature_cfg: dict = None,
|
257 |
+
pretrained_strict: bool = True,
|
258 |
+
pretrained_filter_fn: Callable = None,
|
259 |
+
**kwargs):
|
260 |
+
pruned = kwargs.pop('pruned', False)
|
261 |
+
features = False
|
262 |
+
feature_cfg = feature_cfg or {}
|
263 |
+
|
264 |
+
if kwargs.pop('features_only', False):
|
265 |
+
features = True
|
266 |
+
feature_cfg.setdefault('out_indices', (0, 1, 2, 3, 4))
|
267 |
+
if 'out_indices' in kwargs:
|
268 |
+
feature_cfg['out_indices'] = kwargs.pop('out_indices')
|
269 |
+
|
270 |
+
model = model_cls(**kwargs) if model_cfg is None else model_cls(cfg=model_cfg, **kwargs)
|
271 |
+
model.default_cfg = deepcopy(default_cfg)
|
272 |
+
|
273 |
+
if pruned:
|
274 |
+
model = adapt_model_from_file(model, variant)
|
275 |
+
|
276 |
+
if pretrained:
|
277 |
+
load_pretrained(
|
278 |
+
model,
|
279 |
+
num_classes=kwargs.get('num_classes', 0),
|
280 |
+
in_chans=kwargs.get('in_chans', 3),
|
281 |
+
filter_fn=pretrained_filter_fn, strict=pretrained_strict)
|
282 |
+
|
283 |
+
if features:
|
284 |
+
feature_cls = FeatureListNet
|
285 |
+
if 'feature_cls' in feature_cfg:
|
286 |
+
feature_cls = feature_cfg.pop('feature_cls')
|
287 |
+
if isinstance(feature_cls, str):
|
288 |
+
feature_cls = feature_cls.lower()
|
289 |
+
if 'hook' in feature_cls:
|
290 |
+
feature_cls = FeatureHookNet
|
291 |
+
else:
|
292 |
+
assert False, f'Unknown feature class {feature_cls}'
|
293 |
+
model = feature_cls(model, **feature_cfg)
|
294 |
+
|
295 |
+
return model
|
concept_attention/binary_segmentation_baselines/chefer_vit_explainability/layer_helpers.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Layer/Module Helpers
|
2 |
+
Hacked together by / Copyright 2020 Ross Wightman
|
3 |
+
"""
|
4 |
+
from itertools import repeat
|
5 |
+
import collections.abc
|
6 |
+
|
7 |
+
|
8 |
+
# From PyTorch internals
|
9 |
+
def _ntuple(n):
|
10 |
+
def parse(x):
|
11 |
+
if isinstance(x, collections.abc.Iterable):
|
12 |
+
return x
|
13 |
+
return tuple(repeat(x, n))
|
14 |
+
return parse
|
15 |
+
|
16 |
+
|
17 |
+
to_1tuple = _ntuple(1)
|
18 |
+
to_2tuple = _ntuple(2)
|
19 |
+
to_3tuple = _ntuple(3)
|
20 |
+
to_4tuple = _ntuple(4)
|
21 |
+
to_ntuple = _ntuple
|
concept_attention/binary_segmentation_baselines/chefer_vit_explainability/misc_functions.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# Copyright (c) 2019 Idiap Research Institute, http://www.idiap.ch/
|
3 |
+
# Written by Suraj Srinivas <[email protected]>
|
4 |
+
#
|
5 |
+
|
6 |
+
""" Misc helper functions """
|
7 |
+
|
8 |
+
import cv2
|
9 |
+
import numpy as np
|
10 |
+
import subprocess
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torchvision.transforms as transforms
|
14 |
+
|
15 |
+
|
16 |
+
class NormalizeInverse(transforms.Normalize):
|
17 |
+
# Undo normalization on images
|
18 |
+
|
19 |
+
def __init__(self, mean, std):
|
20 |
+
mean = torch.as_tensor(mean)
|
21 |
+
std = torch.as_tensor(std)
|
22 |
+
std_inv = 1 / (std + 1e-7)
|
23 |
+
mean_inv = -mean * std_inv
|
24 |
+
super(NormalizeInverse, self).__init__(mean=mean_inv, std=std_inv)
|
25 |
+
|
26 |
+
def __call__(self, tensor):
|
27 |
+
return super(NormalizeInverse, self).__call__(tensor.clone())
|
28 |
+
|
29 |
+
|
30 |
+
def create_folder(folder_name):
|
31 |
+
try:
|
32 |
+
subprocess.call(['mkdir', '-p', folder_name])
|
33 |
+
except OSError:
|
34 |
+
None
|
35 |
+
|
36 |
+
|
37 |
+
def save_saliency_map(image, saliency_map, filename):
|
38 |
+
"""
|
39 |
+
Save saliency map on image.
|
40 |
+
|
41 |
+
Args:
|
42 |
+
image: Tensor of size (3,H,W)
|
43 |
+
saliency_map: Tensor of size (1,H,W)
|
44 |
+
filename: string with complete path and file extension
|
45 |
+
|
46 |
+
"""
|
47 |
+
|
48 |
+
image = image.data.cpu().numpy()
|
49 |
+
saliency_map = saliency_map.data.cpu().numpy()
|
50 |
+
|
51 |
+
saliency_map = saliency_map - saliency_map.min()
|
52 |
+
saliency_map = saliency_map / saliency_map.max()
|
53 |
+
saliency_map = saliency_map.clip(0, 1)
|
54 |
+
|
55 |
+
saliency_map = np.uint8(saliency_map * 255).transpose(1, 2, 0)
|
56 |
+
saliency_map = cv2.resize(saliency_map, (224, 224))
|
57 |
+
|
58 |
+
image = np.uint8(image * 255).transpose(1, 2, 0)
|
59 |
+
image = cv2.resize(image, (224, 224))
|
60 |
+
|
61 |
+
# Apply JET colormap
|
62 |
+
color_heatmap = cv2.applyColorMap(saliency_map, cv2.COLORMAP_JET)
|
63 |
+
|
64 |
+
# Combine image with heatmap
|
65 |
+
img_with_heatmap = np.float32(color_heatmap) + np.float32(image)
|
66 |
+
img_with_heatmap = img_with_heatmap / np.max(img_with_heatmap)
|
67 |
+
|
68 |
+
cv2.imwrite(filename, np.uint8(255 * img_with_heatmap))
|
concept_attention/binary_segmentation_baselines/chefer_vit_explainability/modules/__init__.py
ADDED
File without changes
|
concept_attention/binary_segmentation_baselines/chefer_vit_explainability/modules/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (223 Bytes). View file
|
|
concept_attention/binary_segmentation_baselines/chefer_vit_explainability/modules/__pycache__/layers_lrp.cpython-310.pyc
ADDED
Binary file (9.31 kB). View file
|
|
concept_attention/binary_segmentation_baselines/chefer_vit_explainability/modules/__pycache__/layers_ours.cpython-310.pyc
ADDED
Binary file (9.75 kB). View file
|
|
concept_attention/binary_segmentation_baselines/chefer_vit_explainability/modules/layers_lrp.py
ADDED
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
__all__ = ['forward_hook', 'Clone', 'Add', 'Cat', 'ReLU', 'GELU', 'Dropout', 'BatchNorm2d', 'Linear', 'MaxPool2d',
|
6 |
+
'AdaptiveAvgPool2d', 'AvgPool2d', 'Conv2d', 'Sequential', 'safe_divide', 'einsum', 'Softmax', 'IndexSelect',
|
7 |
+
'LayerNorm', 'AddEye']
|
8 |
+
|
9 |
+
|
10 |
+
def safe_divide(a, b):
|
11 |
+
den = b.clamp(min=1e-9) + b.clamp(max=1e-9)
|
12 |
+
den = den + den.eq(0).type(den.type()) * 1e-9
|
13 |
+
return a / den * b.ne(0).type(b.type())
|
14 |
+
|
15 |
+
|
16 |
+
def forward_hook(self, input, output):
|
17 |
+
if type(input[0]) in (list, tuple):
|
18 |
+
self.X = []
|
19 |
+
for i in input[0]:
|
20 |
+
x = i.detach()
|
21 |
+
x.requires_grad = True
|
22 |
+
self.X.append(x)
|
23 |
+
else:
|
24 |
+
self.X = input[0].detach()
|
25 |
+
self.X.requires_grad = True
|
26 |
+
|
27 |
+
self.Y = output
|
28 |
+
|
29 |
+
|
30 |
+
def backward_hook(self, grad_input, grad_output):
|
31 |
+
self.grad_input = grad_input
|
32 |
+
self.grad_output = grad_output
|
33 |
+
|
34 |
+
|
35 |
+
class RelProp(nn.Module):
|
36 |
+
def __init__(self):
|
37 |
+
super(RelProp, self).__init__()
|
38 |
+
# if not self.training:
|
39 |
+
self.register_forward_hook(forward_hook)
|
40 |
+
|
41 |
+
def gradprop(self, Z, X, S):
|
42 |
+
C = torch.autograd.grad(Z, X, S, retain_graph=True)
|
43 |
+
return C
|
44 |
+
|
45 |
+
def relprop(self, R, alpha):
|
46 |
+
return R
|
47 |
+
|
48 |
+
|
49 |
+
class RelPropSimple(RelProp):
|
50 |
+
def relprop(self, R, alpha):
|
51 |
+
Z = self.forward(self.X)
|
52 |
+
S = safe_divide(R, Z)
|
53 |
+
C = self.gradprop(Z, self.X, S)
|
54 |
+
|
55 |
+
if torch.is_tensor(self.X) == False:
|
56 |
+
outputs = []
|
57 |
+
outputs.append(self.X[0] * C[0])
|
58 |
+
outputs.append(self.X[1] * C[1])
|
59 |
+
else:
|
60 |
+
outputs = self.X * (C[0])
|
61 |
+
return outputs
|
62 |
+
|
63 |
+
class AddEye(RelPropSimple):
|
64 |
+
# input of shape B, C, seq_len, seq_len
|
65 |
+
def forward(self, input):
|
66 |
+
return input + torch.eye(input.shape[2]).expand_as(input).to(input.device)
|
67 |
+
|
68 |
+
class ReLU(nn.ReLU, RelProp):
|
69 |
+
pass
|
70 |
+
|
71 |
+
class GELU(nn.GELU, RelProp):
|
72 |
+
pass
|
73 |
+
|
74 |
+
class Softmax(nn.Softmax, RelProp):
|
75 |
+
pass
|
76 |
+
|
77 |
+
class LayerNorm(nn.LayerNorm, RelProp):
|
78 |
+
pass
|
79 |
+
|
80 |
+
class Dropout(nn.Dropout, RelProp):
|
81 |
+
pass
|
82 |
+
|
83 |
+
|
84 |
+
class MaxPool2d(nn.MaxPool2d, RelPropSimple):
|
85 |
+
pass
|
86 |
+
|
87 |
+
class LayerNorm(nn.LayerNorm, RelProp):
|
88 |
+
pass
|
89 |
+
|
90 |
+
class AdaptiveAvgPool2d(nn.AdaptiveAvgPool2d, RelPropSimple):
|
91 |
+
pass
|
92 |
+
|
93 |
+
|
94 |
+
class AvgPool2d(nn.AvgPool2d, RelPropSimple):
|
95 |
+
pass
|
96 |
+
|
97 |
+
|
98 |
+
class Add(RelPropSimple):
|
99 |
+
def forward(self, inputs):
|
100 |
+
return torch.add(*inputs)
|
101 |
+
|
102 |
+
class einsum(RelPropSimple):
|
103 |
+
def __init__(self, equation):
|
104 |
+
super().__init__()
|
105 |
+
self.equation = equation
|
106 |
+
def forward(self, *operands):
|
107 |
+
return torch.einsum(self.equation, *operands)
|
108 |
+
|
109 |
+
class IndexSelect(RelProp):
|
110 |
+
def forward(self, inputs, dim, indices):
|
111 |
+
self.__setattr__('dim', dim)
|
112 |
+
self.__setattr__('indices', indices)
|
113 |
+
|
114 |
+
return torch.index_select(inputs, dim, indices)
|
115 |
+
|
116 |
+
def relprop(self, R, alpha):
|
117 |
+
Z = self.forward(self.X, self.dim, self.indices)
|
118 |
+
S = safe_divide(R, Z)
|
119 |
+
C = self.gradprop(Z, self.X, S)
|
120 |
+
|
121 |
+
if torch.is_tensor(self.X) == False:
|
122 |
+
outputs = []
|
123 |
+
outputs.append(self.X[0] * C[0])
|
124 |
+
outputs.append(self.X[1] * C[1])
|
125 |
+
else:
|
126 |
+
outputs = self.X * (C[0])
|
127 |
+
return outputs
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
class Clone(RelProp):
|
132 |
+
def forward(self, input, num):
|
133 |
+
self.__setattr__('num', num)
|
134 |
+
outputs = []
|
135 |
+
for _ in range(num):
|
136 |
+
outputs.append(input)
|
137 |
+
|
138 |
+
return outputs
|
139 |
+
|
140 |
+
def relprop(self, R, alpha):
|
141 |
+
Z = []
|
142 |
+
for _ in range(self.num):
|
143 |
+
Z.append(self.X)
|
144 |
+
S = [safe_divide(r, z) for r, z in zip(R, Z)]
|
145 |
+
C = self.gradprop(Z, self.X, S)[0]
|
146 |
+
|
147 |
+
R = self.X * C
|
148 |
+
|
149 |
+
return R
|
150 |
+
|
151 |
+
class Cat(RelProp):
|
152 |
+
def forward(self, inputs, dim):
|
153 |
+
self.__setattr__('dim', dim)
|
154 |
+
return torch.cat(inputs, dim)
|
155 |
+
|
156 |
+
def relprop(self, R, alpha):
|
157 |
+
Z = self.forward(self.X, self.dim)
|
158 |
+
S = safe_divide(R, Z)
|
159 |
+
C = self.gradprop(Z, self.X, S)
|
160 |
+
|
161 |
+
outputs = []
|
162 |
+
for x, c in zip(self.X, C):
|
163 |
+
outputs.append(x * c)
|
164 |
+
|
165 |
+
return outputs
|
166 |
+
|
167 |
+
|
168 |
+
class Sequential(nn.Sequential):
|
169 |
+
def relprop(self, R, alpha):
|
170 |
+
for m in reversed(self._modules.values()):
|
171 |
+
R = m.relprop(R, alpha)
|
172 |
+
return R
|
173 |
+
|
174 |
+
|
175 |
+
class BatchNorm2d(nn.BatchNorm2d, RelProp):
|
176 |
+
def relprop(self, R, alpha):
|
177 |
+
X = self.X
|
178 |
+
beta = 1 - alpha
|
179 |
+
weight = self.weight.unsqueeze(0).unsqueeze(2).unsqueeze(3) / (
|
180 |
+
(self.running_var.unsqueeze(0).unsqueeze(2).unsqueeze(3).pow(2) + self.eps).pow(0.5))
|
181 |
+
Z = X * weight + 1e-9
|
182 |
+
S = R / Z
|
183 |
+
Ca = S * weight
|
184 |
+
R = self.X * (Ca)
|
185 |
+
return R
|
186 |
+
|
187 |
+
|
188 |
+
class Linear(nn.Linear, RelProp):
|
189 |
+
def relprop(self, R, alpha):
|
190 |
+
beta = alpha - 1
|
191 |
+
pw = torch.clamp(self.weight, min=0)
|
192 |
+
nw = torch.clamp(self.weight, max=0)
|
193 |
+
px = torch.clamp(self.X, min=0)
|
194 |
+
nx = torch.clamp(self.X, max=0)
|
195 |
+
|
196 |
+
def f(w1, w2, x1, x2):
|
197 |
+
Z1 = F.linear(x1, w1)
|
198 |
+
Z2 = F.linear(x2, w2)
|
199 |
+
S1 = safe_divide(R, Z1)
|
200 |
+
S2 = safe_divide(R, Z2)
|
201 |
+
C1 = x1 * torch.autograd.grad(Z1, x1, S1)[0]
|
202 |
+
C2 = x2 * torch.autograd.grad(Z2, x2, S2)[0]
|
203 |
+
|
204 |
+
return C1 + C2
|
205 |
+
|
206 |
+
activator_relevances = f(pw, nw, px, nx)
|
207 |
+
inhibitor_relevances = f(nw, pw, px, nx)
|
208 |
+
|
209 |
+
R = alpha * activator_relevances - beta * inhibitor_relevances
|
210 |
+
|
211 |
+
return R
|
212 |
+
|
213 |
+
|
214 |
+
class Conv2d(nn.Conv2d, RelProp):
|
215 |
+
def gradprop2(self, DY, weight):
|
216 |
+
Z = self.forward(self.X)
|
217 |
+
|
218 |
+
output_padding = self.X.size()[2] - (
|
219 |
+
(Z.size()[2] - 1) * self.stride[0] - 2 * self.padding[0] + self.kernel_size[0])
|
220 |
+
|
221 |
+
return F.conv_transpose2d(DY, weight, stride=self.stride, padding=self.padding, output_padding=output_padding)
|
222 |
+
|
223 |
+
def relprop(self, R, alpha):
|
224 |
+
if self.X.shape[1] == 3:
|
225 |
+
pw = torch.clamp(self.weight, min=0)
|
226 |
+
nw = torch.clamp(self.weight, max=0)
|
227 |
+
X = self.X
|
228 |
+
L = self.X * 0 + \
|
229 |
+
torch.min(torch.min(torch.min(self.X, dim=1, keepdim=True)[0], dim=2, keepdim=True)[0], dim=3,
|
230 |
+
keepdim=True)[0]
|
231 |
+
H = self.X * 0 + \
|
232 |
+
torch.max(torch.max(torch.max(self.X, dim=1, keepdim=True)[0], dim=2, keepdim=True)[0], dim=3,
|
233 |
+
keepdim=True)[0]
|
234 |
+
Za = torch.conv2d(X, self.weight, bias=None, stride=self.stride, padding=self.padding) - \
|
235 |
+
torch.conv2d(L, pw, bias=None, stride=self.stride, padding=self.padding) - \
|
236 |
+
torch.conv2d(H, nw, bias=None, stride=self.stride, padding=self.padding) + 1e-9
|
237 |
+
|
238 |
+
S = R / Za
|
239 |
+
C = X * self.gradprop2(S, self.weight) - L * self.gradprop2(S, pw) - H * self.gradprop2(S, nw)
|
240 |
+
R = C
|
241 |
+
else:
|
242 |
+
beta = alpha - 1
|
243 |
+
pw = torch.clamp(self.weight, min=0)
|
244 |
+
nw = torch.clamp(self.weight, max=0)
|
245 |
+
px = torch.clamp(self.X, min=0)
|
246 |
+
nx = torch.clamp(self.X, max=0)
|
247 |
+
|
248 |
+
def f(w1, w2, x1, x2):
|
249 |
+
Z1 = F.conv2d(x1, w1, bias=None, stride=self.stride, padding=self.padding)
|
250 |
+
Z2 = F.conv2d(x2, w2, bias=None, stride=self.stride, padding=self.padding)
|
251 |
+
S1 = safe_divide(R, Z1)
|
252 |
+
S2 = safe_divide(R, Z2)
|
253 |
+
C1 = x1 * self.gradprop(Z1, x1, S1)[0]
|
254 |
+
C2 = x2 * self.gradprop(Z2, x2, S2)[0]
|
255 |
+
return C1 + C2
|
256 |
+
|
257 |
+
activator_relevances = f(pw, nw, px, nx)
|
258 |
+
inhibitor_relevances = f(nw, pw, px, nx)
|
259 |
+
|
260 |
+
R = alpha * activator_relevances - beta * inhibitor_relevances
|
261 |
+
return R
|
concept_attention/binary_segmentation_baselines/chefer_vit_explainability/modules/layers_ours.py
ADDED
@@ -0,0 +1,280 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
__all__ = ['forward_hook', 'Clone', 'Add', 'Cat', 'ReLU', 'GELU', 'Dropout', 'BatchNorm2d', 'Linear', 'MaxPool2d',
|
6 |
+
'AdaptiveAvgPool2d', 'AvgPool2d', 'Conv2d', 'Sequential', 'safe_divide', 'einsum', 'Softmax', 'IndexSelect',
|
7 |
+
'LayerNorm', 'AddEye']
|
8 |
+
|
9 |
+
|
10 |
+
def safe_divide(a, b):
|
11 |
+
den = b.clamp(min=1e-9) + b.clamp(max=1e-9)
|
12 |
+
den = den + den.eq(0).type(den.type()) * 1e-9
|
13 |
+
return a / den * b.ne(0).type(b.type())
|
14 |
+
|
15 |
+
|
16 |
+
def forward_hook(self, input, output):
|
17 |
+
if type(input[0]) in (list, tuple):
|
18 |
+
self.X = []
|
19 |
+
for i in input[0]:
|
20 |
+
x = i.detach()
|
21 |
+
x.requires_grad = True
|
22 |
+
self.X.append(x)
|
23 |
+
else:
|
24 |
+
self.X = input[0].detach()
|
25 |
+
self.X.requires_grad = True
|
26 |
+
|
27 |
+
self.Y = output
|
28 |
+
|
29 |
+
|
30 |
+
def backward_hook(self, grad_input, grad_output):
|
31 |
+
self.grad_input = grad_input
|
32 |
+
self.grad_output = grad_output
|
33 |
+
|
34 |
+
|
35 |
+
class RelProp(nn.Module):
|
36 |
+
def __init__(self):
|
37 |
+
super(RelProp, self).__init__()
|
38 |
+
# if not self.training:
|
39 |
+
self.register_forward_hook(forward_hook)
|
40 |
+
|
41 |
+
def gradprop(self, Z, X, S):
|
42 |
+
C = torch.autograd.grad(Z, X, S, retain_graph=True)
|
43 |
+
return C
|
44 |
+
|
45 |
+
def relprop(self, R, alpha):
|
46 |
+
return R
|
47 |
+
|
48 |
+
class RelPropSimple(RelProp):
|
49 |
+
def relprop(self, R, alpha):
|
50 |
+
Z = self.forward(self.X)
|
51 |
+
S = safe_divide(R, Z)
|
52 |
+
C = self.gradprop(Z, self.X, S)
|
53 |
+
|
54 |
+
if torch.is_tensor(self.X) == False:
|
55 |
+
outputs = []
|
56 |
+
outputs.append(self.X[0] * C[0])
|
57 |
+
outputs.append(self.X[1] * C[1])
|
58 |
+
else:
|
59 |
+
outputs = self.X * (C[0])
|
60 |
+
return outputs
|
61 |
+
|
62 |
+
class AddEye(RelPropSimple):
|
63 |
+
# input of shape B, C, seq_len, seq_len
|
64 |
+
def forward(self, input):
|
65 |
+
return input + torch.eye(input.shape[2]).expand_as(input).to(input.device)
|
66 |
+
|
67 |
+
class ReLU(nn.ReLU, RelProp):
|
68 |
+
pass
|
69 |
+
|
70 |
+
class GELU(nn.GELU, RelProp):
|
71 |
+
pass
|
72 |
+
|
73 |
+
class Softmax(nn.Softmax, RelProp):
|
74 |
+
pass
|
75 |
+
|
76 |
+
class LayerNorm(nn.LayerNorm, RelProp):
|
77 |
+
pass
|
78 |
+
|
79 |
+
class Dropout(nn.Dropout, RelProp):
|
80 |
+
pass
|
81 |
+
|
82 |
+
|
83 |
+
class MaxPool2d(nn.MaxPool2d, RelPropSimple):
|
84 |
+
pass
|
85 |
+
|
86 |
+
class LayerNorm(nn.LayerNorm, RelProp):
|
87 |
+
pass
|
88 |
+
|
89 |
+
class AdaptiveAvgPool2d(nn.AdaptiveAvgPool2d, RelPropSimple):
|
90 |
+
pass
|
91 |
+
|
92 |
+
|
93 |
+
class AvgPool2d(nn.AvgPool2d, RelPropSimple):
|
94 |
+
pass
|
95 |
+
|
96 |
+
|
97 |
+
class Add(RelPropSimple):
|
98 |
+
def forward(self, inputs):
|
99 |
+
return torch.add(*inputs)
|
100 |
+
|
101 |
+
def relprop(self, R, alpha):
|
102 |
+
Z = self.forward(self.X)
|
103 |
+
S = safe_divide(R, Z)
|
104 |
+
C = self.gradprop(Z, self.X, S)
|
105 |
+
|
106 |
+
a = self.X[0] * C[0]
|
107 |
+
b = self.X[1] * C[1]
|
108 |
+
|
109 |
+
a_sum = a.sum()
|
110 |
+
b_sum = b.sum()
|
111 |
+
|
112 |
+
a_fact = safe_divide(a_sum.abs(), a_sum.abs() + b_sum.abs()) * R.sum()
|
113 |
+
b_fact = safe_divide(b_sum.abs(), a_sum.abs() + b_sum.abs()) * R.sum()
|
114 |
+
|
115 |
+
a = a * safe_divide(a_fact, a.sum())
|
116 |
+
b = b * safe_divide(b_fact, b.sum())
|
117 |
+
|
118 |
+
outputs = [a, b]
|
119 |
+
|
120 |
+
return outputs
|
121 |
+
|
122 |
+
class einsum(RelPropSimple):
|
123 |
+
def __init__(self, equation):
|
124 |
+
super().__init__()
|
125 |
+
self.equation = equation
|
126 |
+
def forward(self, *operands):
|
127 |
+
return torch.einsum(self.equation, *operands)
|
128 |
+
|
129 |
+
class IndexSelect(RelProp):
|
130 |
+
def forward(self, inputs, dim, indices):
|
131 |
+
self.__setattr__('dim', dim)
|
132 |
+
self.__setattr__('indices', indices)
|
133 |
+
|
134 |
+
return torch.index_select(inputs, dim, indices)
|
135 |
+
|
136 |
+
def relprop(self, R, alpha):
|
137 |
+
Z = self.forward(self.X, self.dim, self.indices)
|
138 |
+
S = safe_divide(R, Z)
|
139 |
+
C = self.gradprop(Z, self.X, S)
|
140 |
+
|
141 |
+
if torch.is_tensor(self.X) == False:
|
142 |
+
outputs = []
|
143 |
+
outputs.append(self.X[0] * C[0])
|
144 |
+
outputs.append(self.X[1] * C[1])
|
145 |
+
else:
|
146 |
+
outputs = self.X * (C[0])
|
147 |
+
return outputs
|
148 |
+
|
149 |
+
|
150 |
+
|
151 |
+
class Clone(RelProp):
|
152 |
+
def forward(self, input, num):
|
153 |
+
self.__setattr__('num', num)
|
154 |
+
outputs = []
|
155 |
+
for _ in range(num):
|
156 |
+
outputs.append(input)
|
157 |
+
|
158 |
+
return outputs
|
159 |
+
|
160 |
+
def relprop(self, R, alpha):
|
161 |
+
Z = []
|
162 |
+
for _ in range(self.num):
|
163 |
+
Z.append(self.X)
|
164 |
+
S = [safe_divide(r, z) for r, z in zip(R, Z)]
|
165 |
+
C = self.gradprop(Z, self.X, S)[0]
|
166 |
+
|
167 |
+
R = self.X * C
|
168 |
+
|
169 |
+
return R
|
170 |
+
|
171 |
+
class Cat(RelProp):
|
172 |
+
def forward(self, inputs, dim):
|
173 |
+
self.__setattr__('dim', dim)
|
174 |
+
return torch.cat(inputs, dim)
|
175 |
+
|
176 |
+
def relprop(self, R, alpha):
|
177 |
+
Z = self.forward(self.X, self.dim)
|
178 |
+
S = safe_divide(R, Z)
|
179 |
+
C = self.gradprop(Z, self.X, S)
|
180 |
+
|
181 |
+
outputs = []
|
182 |
+
for x, c in zip(self.X, C):
|
183 |
+
outputs.append(x * c)
|
184 |
+
|
185 |
+
return outputs
|
186 |
+
|
187 |
+
|
188 |
+
class Sequential(nn.Sequential):
|
189 |
+
def relprop(self, R, alpha):
|
190 |
+
for m in reversed(self._modules.values()):
|
191 |
+
R = m.relprop(R, alpha)
|
192 |
+
return R
|
193 |
+
|
194 |
+
class BatchNorm2d(nn.BatchNorm2d, RelProp):
|
195 |
+
def relprop(self, R, alpha):
|
196 |
+
X = self.X
|
197 |
+
beta = 1 - alpha
|
198 |
+
weight = self.weight.unsqueeze(0).unsqueeze(2).unsqueeze(3) / (
|
199 |
+
(self.running_var.unsqueeze(0).unsqueeze(2).unsqueeze(3).pow(2) + self.eps).pow(0.5))
|
200 |
+
Z = X * weight + 1e-9
|
201 |
+
S = R / Z
|
202 |
+
Ca = S * weight
|
203 |
+
R = self.X * (Ca)
|
204 |
+
return R
|
205 |
+
|
206 |
+
|
207 |
+
class Linear(nn.Linear, RelProp):
|
208 |
+
def relprop(self, R, alpha):
|
209 |
+
beta = alpha - 1
|
210 |
+
pw = torch.clamp(self.weight, min=0)
|
211 |
+
nw = torch.clamp(self.weight, max=0)
|
212 |
+
px = torch.clamp(self.X, min=0)
|
213 |
+
nx = torch.clamp(self.X, max=0)
|
214 |
+
|
215 |
+
def f(w1, w2, x1, x2):
|
216 |
+
Z1 = F.linear(x1, w1)
|
217 |
+
Z2 = F.linear(x2, w2)
|
218 |
+
S1 = safe_divide(R, Z1 + Z2)
|
219 |
+
S2 = safe_divide(R, Z1 + Z2)
|
220 |
+
C1 = x1 * torch.autograd.grad(Z1, x1, S1)[0]
|
221 |
+
C2 = x2 * torch.autograd.grad(Z2, x2, S2)[0]
|
222 |
+
|
223 |
+
return C1 + C2
|
224 |
+
|
225 |
+
activator_relevances = f(pw, nw, px, nx)
|
226 |
+
inhibitor_relevances = f(nw, pw, px, nx)
|
227 |
+
|
228 |
+
R = alpha * activator_relevances - beta * inhibitor_relevances
|
229 |
+
|
230 |
+
return R
|
231 |
+
|
232 |
+
|
233 |
+
class Conv2d(nn.Conv2d, RelProp):
|
234 |
+
def gradprop2(self, DY, weight):
|
235 |
+
Z = self.forward(self.X)
|
236 |
+
|
237 |
+
output_padding = self.X.size()[2] - (
|
238 |
+
(Z.size()[2] - 1) * self.stride[0] - 2 * self.padding[0] + self.kernel_size[0])
|
239 |
+
|
240 |
+
return F.conv_transpose2d(DY, weight, stride=self.stride, padding=self.padding, output_padding=output_padding)
|
241 |
+
|
242 |
+
def relprop(self, R, alpha):
|
243 |
+
if self.X.shape[1] == 3:
|
244 |
+
pw = torch.clamp(self.weight, min=0)
|
245 |
+
nw = torch.clamp(self.weight, max=0)
|
246 |
+
X = self.X
|
247 |
+
L = self.X * 0 + \
|
248 |
+
torch.min(torch.min(torch.min(self.X, dim=1, keepdim=True)[0], dim=2, keepdim=True)[0], dim=3,
|
249 |
+
keepdim=True)[0]
|
250 |
+
H = self.X * 0 + \
|
251 |
+
torch.max(torch.max(torch.max(self.X, dim=1, keepdim=True)[0], dim=2, keepdim=True)[0], dim=3,
|
252 |
+
keepdim=True)[0]
|
253 |
+
Za = torch.conv2d(X, self.weight, bias=None, stride=self.stride, padding=self.padding) - \
|
254 |
+
torch.conv2d(L, pw, bias=None, stride=self.stride, padding=self.padding) - \
|
255 |
+
torch.conv2d(H, nw, bias=None, stride=self.stride, padding=self.padding) + 1e-9
|
256 |
+
|
257 |
+
S = R / Za
|
258 |
+
C = X * self.gradprop2(S, self.weight) - L * self.gradprop2(S, pw) - H * self.gradprop2(S, nw)
|
259 |
+
R = C
|
260 |
+
else:
|
261 |
+
beta = alpha - 1
|
262 |
+
pw = torch.clamp(self.weight, min=0)
|
263 |
+
nw = torch.clamp(self.weight, max=0)
|
264 |
+
px = torch.clamp(self.X, min=0)
|
265 |
+
nx = torch.clamp(self.X, max=0)
|
266 |
+
|
267 |
+
def f(w1, w2, x1, x2):
|
268 |
+
Z1 = F.conv2d(x1, w1, bias=None, stride=self.stride, padding=self.padding)
|
269 |
+
Z2 = F.conv2d(x2, w2, bias=None, stride=self.stride, padding=self.padding)
|
270 |
+
S1 = safe_divide(R, Z1)
|
271 |
+
S2 = safe_divide(R, Z2)
|
272 |
+
C1 = x1 * self.gradprop(Z1, x1, S1)[0]
|
273 |
+
C2 = x2 * self.gradprop(Z2, x2, S2)[0]
|
274 |
+
return C1 + C2
|
275 |
+
|
276 |
+
activator_relevances = f(pw, nw, px, nx)
|
277 |
+
inhibitor_relevances = f(nw, pw, px, nx)
|
278 |
+
|
279 |
+
R = alpha * activator_relevances - beta * inhibitor_relevances
|
280 |
+
return R
|
concept_attention/binary_segmentation_baselines/chefer_vit_explainability/pertubation_eval_from_hdf5.py
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import os
|
3 |
+
from tqdm import tqdm
|
4 |
+
import numpy as np
|
5 |
+
import argparse
|
6 |
+
|
7 |
+
# Import saliency methods and models
|
8 |
+
from concept_attention.binary_segmentation_baselines.chefer_vit_explainability.ViT_explanation_generator import Baselines
|
9 |
+
from concept_attention.binary_segmentation_baselines.chefer_vit_explainability.ViT_new import vit_base_patch16_224
|
10 |
+
# from models.vgg import vgg19
|
11 |
+
import glob
|
12 |
+
|
13 |
+
from dataset.expl_hdf5 import ImagenetResults
|
14 |
+
|
15 |
+
|
16 |
+
def normalize(tensor,
|
17 |
+
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]):
|
18 |
+
dtype = tensor.dtype
|
19 |
+
mean = torch.as_tensor(mean, dtype=dtype, device=tensor.device)
|
20 |
+
std = torch.as_tensor(std, dtype=dtype, device=tensor.device)
|
21 |
+
tensor.sub_(mean[None, :, None, None]).div_(std[None, :, None, None])
|
22 |
+
return tensor
|
23 |
+
|
24 |
+
|
25 |
+
def eval(args):
|
26 |
+
num_samples = 0
|
27 |
+
num_correct_model = np.zeros((len(imagenet_ds,)))
|
28 |
+
dissimilarity_model = np.zeros((len(imagenet_ds,)))
|
29 |
+
model_index = 0
|
30 |
+
|
31 |
+
if args.scale == 'per':
|
32 |
+
base_size = 224 * 224
|
33 |
+
perturbation_steps = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
|
34 |
+
elif args.scale == '100':
|
35 |
+
base_size = 100
|
36 |
+
perturbation_steps = [5, 10, 15, 20, 25, 30, 35, 40, 45]
|
37 |
+
else:
|
38 |
+
raise Exception('scale not valid')
|
39 |
+
|
40 |
+
num_correct_pertub = np.zeros((9, len(imagenet_ds)))
|
41 |
+
dissimilarity_pertub = np.zeros((9, len(imagenet_ds)))
|
42 |
+
logit_diff_pertub = np.zeros((9, len(imagenet_ds)))
|
43 |
+
prob_diff_pertub = np.zeros((9, len(imagenet_ds)))
|
44 |
+
perturb_index = 0
|
45 |
+
|
46 |
+
for batch_idx, (data, vis, target) in enumerate(tqdm(sample_loader)):
|
47 |
+
# Update the number of samples
|
48 |
+
num_samples += len(data)
|
49 |
+
|
50 |
+
data = data.to(device)
|
51 |
+
vis = vis.to(device)
|
52 |
+
target = target.to(device)
|
53 |
+
norm_data = normalize(data.clone())
|
54 |
+
|
55 |
+
# Compute model accuracy
|
56 |
+
pred = model(norm_data)
|
57 |
+
pred_probabilities = torch.softmax(pred, dim=1)
|
58 |
+
pred_org_logit = pred.data.max(1, keepdim=True)[0].squeeze(1)
|
59 |
+
pred_org_prob = pred_probabilities.data.max(1, keepdim=True)[0].squeeze(1)
|
60 |
+
pred_class = pred.data.max(1, keepdim=True)[1].squeeze(1)
|
61 |
+
tgt_pred = (target == pred_class).type(target.type()).data.cpu().numpy()
|
62 |
+
num_correct_model[model_index:model_index+len(tgt_pred)] = tgt_pred
|
63 |
+
|
64 |
+
probs = torch.softmax(pred, dim=1)
|
65 |
+
target_probs = torch.gather(probs, 1, target[:, None])[:, 0]
|
66 |
+
second_probs = probs.data.topk(2, dim=1)[0][:, 1]
|
67 |
+
temp = torch.log(target_probs / second_probs).data.cpu().numpy()
|
68 |
+
dissimilarity_model[model_index:model_index+len(temp)] = temp
|
69 |
+
|
70 |
+
if args.wrong:
|
71 |
+
wid = np.argwhere(tgt_pred == 0).flatten()
|
72 |
+
if len(wid) == 0:
|
73 |
+
continue
|
74 |
+
wid = torch.from_numpy(wid).to(vis.device)
|
75 |
+
vis = vis.index_select(0, wid)
|
76 |
+
data = data.index_select(0, wid)
|
77 |
+
target = target.index_select(0, wid)
|
78 |
+
|
79 |
+
# Save original shape
|
80 |
+
org_shape = data.shape
|
81 |
+
|
82 |
+
if args.neg:
|
83 |
+
vis = -vis
|
84 |
+
|
85 |
+
vis = vis.reshape(org_shape[0], -1)
|
86 |
+
|
87 |
+
for i in range(len(perturbation_steps)):
|
88 |
+
_data = data.clone()
|
89 |
+
|
90 |
+
_, idx = torch.topk(vis, int(base_size * perturbation_steps[i]), dim=-1)
|
91 |
+
idx = idx.unsqueeze(1).repeat(1, org_shape[1], 1)
|
92 |
+
_data = _data.reshape(org_shape[0], org_shape[1], -1)
|
93 |
+
_data = _data.scatter_(-1, idx, 0)
|
94 |
+
_data = _data.reshape(*org_shape)
|
95 |
+
|
96 |
+
_norm_data = normalize(_data)
|
97 |
+
|
98 |
+
out = model(_norm_data)
|
99 |
+
|
100 |
+
pred_probabilities = torch.softmax(out, dim=1)
|
101 |
+
pred_prob = pred_probabilities.data.max(1, keepdim=True)[0].squeeze(1)
|
102 |
+
diff = (pred_prob - pred_org_prob).data.cpu().numpy()
|
103 |
+
prob_diff_pertub[i, perturb_index:perturb_index+len(diff)] = diff
|
104 |
+
|
105 |
+
pred_logit = out.data.max(1, keepdim=True)[0].squeeze(1)
|
106 |
+
diff = (pred_logit - pred_org_logit).data.cpu().numpy()
|
107 |
+
logit_diff_pertub[i, perturb_index:perturb_index+len(diff)] = diff
|
108 |
+
|
109 |
+
target_class = out.data.max(1, keepdim=True)[1].squeeze(1)
|
110 |
+
temp = (target == target_class).type(target.type()).data.cpu().numpy()
|
111 |
+
num_correct_pertub[i, perturb_index:perturb_index+len(temp)] = temp
|
112 |
+
|
113 |
+
probs_pertub = torch.softmax(out, dim=1)
|
114 |
+
target_probs = torch.gather(probs_pertub, 1, target[:, None])[:, 0]
|
115 |
+
second_probs = probs_pertub.data.topk(2, dim=1)[0][:, 1]
|
116 |
+
temp = torch.log(target_probs / second_probs).data.cpu().numpy()
|
117 |
+
dissimilarity_pertub[i, perturb_index:perturb_index+len(temp)] = temp
|
118 |
+
|
119 |
+
model_index += len(target)
|
120 |
+
perturb_index += len(target)
|
121 |
+
|
122 |
+
np.save(os.path.join(args.experiment_dir, 'model_hits.npy'), num_correct_model)
|
123 |
+
np.save(os.path.join(args.experiment_dir, 'model_dissimilarities.npy'), dissimilarity_model)
|
124 |
+
np.save(os.path.join(args.experiment_dir, 'perturbations_hits.npy'), num_correct_pertub[:, :perturb_index])
|
125 |
+
np.save(os.path.join(args.experiment_dir, 'perturbations_dissimilarities.npy'), dissimilarity_pertub[:, :perturb_index])
|
126 |
+
np.save(os.path.join(args.experiment_dir, 'perturbations_logit_diff.npy'), logit_diff_pertub[:, :perturb_index])
|
127 |
+
np.save(os.path.join(args.experiment_dir, 'perturbations_prob_diff.npy'), prob_diff_pertub[:, :perturb_index])
|
128 |
+
|
129 |
+
print(np.mean(num_correct_model), np.std(num_correct_model))
|
130 |
+
print(np.mean(dissimilarity_model), np.std(dissimilarity_model))
|
131 |
+
print(perturbation_steps)
|
132 |
+
print(np.mean(num_correct_pertub, axis=1), np.std(num_correct_pertub, axis=1))
|
133 |
+
print(np.mean(dissimilarity_pertub, axis=1), np.std(dissimilarity_pertub, axis=1))
|
134 |
+
|
135 |
+
|
136 |
+
if __name__ == "__main__":
|
137 |
+
parser = argparse.ArgumentParser(description='Train a segmentation')
|
138 |
+
parser.add_argument('--batch-size', type=int,
|
139 |
+
default=16,
|
140 |
+
help='')
|
141 |
+
parser.add_argument('--neg', type=bool,
|
142 |
+
default=True,
|
143 |
+
help='')
|
144 |
+
parser.add_argument('--value', action='store_true',
|
145 |
+
default=False,
|
146 |
+
help='')
|
147 |
+
parser.add_argument('--scale', type=str,
|
148 |
+
default='per',
|
149 |
+
choices=['per', '100'],
|
150 |
+
help='')
|
151 |
+
parser.add_argument('--method', type=str,
|
152 |
+
default='grad_rollout',
|
153 |
+
choices=['rollout', 'lrp', 'transformer_attribution', 'full_lrp', 'v_gradcam', 'lrp_last_layer',
|
154 |
+
'lrp_second_layer', 'gradcam',
|
155 |
+
'attn_last_layer', 'attn_gradcam', 'input_grads'],
|
156 |
+
help='')
|
157 |
+
parser.add_argument('--vis-class', type=str,
|
158 |
+
default='top',
|
159 |
+
choices=['top', 'target', 'index'],
|
160 |
+
help='')
|
161 |
+
parser.add_argument('--wrong', action='store_true',
|
162 |
+
default=False,
|
163 |
+
help='')
|
164 |
+
parser.add_argument('--class-id', type=int,
|
165 |
+
default=0,
|
166 |
+
help='')
|
167 |
+
parser.add_argument('--is-ablation', type=bool,
|
168 |
+
default=False,
|
169 |
+
help='')
|
170 |
+
args = parser.parse_args()
|
171 |
+
|
172 |
+
torch.multiprocessing.set_start_method('spawn')
|
173 |
+
|
174 |
+
# PATH variables
|
175 |
+
PATH = os.path.dirname(os.path.abspath(__file__)) + '/'
|
176 |
+
dataset = PATH + 'dataset/'
|
177 |
+
os.makedirs(os.path.join(PATH, 'experiments'), exist_ok=True)
|
178 |
+
os.makedirs(os.path.join(PATH, 'experiments/perturbations'), exist_ok=True)
|
179 |
+
|
180 |
+
exp_name = args.method
|
181 |
+
exp_name += '_neg' if args.neg else '_pos'
|
182 |
+
print(exp_name)
|
183 |
+
|
184 |
+
if args.vis_class == 'index':
|
185 |
+
args.runs_dir = os.path.join(PATH, 'experiments/perturbations/{}/{}_{}'.format(exp_name,
|
186 |
+
args.vis_class,
|
187 |
+
args.class_id))
|
188 |
+
else:
|
189 |
+
ablation_fold = 'ablation' if args.is_ablation else 'not_ablation'
|
190 |
+
args.runs_dir = os.path.join(PATH, 'experiments/perturbations/{}/{}/{}'.format(exp_name,
|
191 |
+
args.vis_class, ablation_fold))
|
192 |
+
# args.runs_dir = os.path.join(PATH, 'experiments/perturbations/{}/{}'.format(exp_name,
|
193 |
+
# args.vis_class))
|
194 |
+
|
195 |
+
if args.wrong:
|
196 |
+
args.runs_dir += '_wrong'
|
197 |
+
|
198 |
+
experiments = sorted(glob.glob(os.path.join(args.runs_dir, 'experiment_*')))
|
199 |
+
experiment_id = int(experiments[-1].split('_')[-1]) + 1 if experiments else 0
|
200 |
+
args.experiment_dir = os.path.join(args.runs_dir, 'experiment_{}'.format(str(experiment_id)))
|
201 |
+
os.makedirs(args.experiment_dir, exist_ok=True)
|
202 |
+
|
203 |
+
cuda = torch.cuda.is_available()
|
204 |
+
device = torch.device("cuda" if cuda else "cpu")
|
205 |
+
|
206 |
+
if args.vis_class == 'index':
|
207 |
+
vis_method_dir = os.path.join(PATH,'visualizations/{}/{}_{}'.format(args.method,
|
208 |
+
args.vis_class,
|
209 |
+
args.class_id))
|
210 |
+
else:
|
211 |
+
ablation_fold = 'ablation' if args.is_ablation else 'not_ablation'
|
212 |
+
vis_method_dir = os.path.join(PATH,'visualizations/{}/{}/{}'.format(args.method,
|
213 |
+
args.vis_class, ablation_fold))
|
214 |
+
# vis_method_dir = os.path.join(PATH, 'visualizations/{}/{}'.format(args.method,
|
215 |
+
# args.vis_class))
|
216 |
+
|
217 |
+
# imagenet_ds = ImagenetResults('visualizations/{}'.format(args.method))
|
218 |
+
imagenet_ds = ImagenetResults(vis_method_dir)
|
219 |
+
|
220 |
+
# Model
|
221 |
+
model = vit_base_patch16_224(pretrained=True).cuda()
|
222 |
+
model.eval()
|
223 |
+
|
224 |
+
save_path = PATH + 'results/'
|
225 |
+
|
226 |
+
sample_loader = torch.utils.data.DataLoader(
|
227 |
+
imagenet_ds,
|
228 |
+
batch_size=args.batch_size,
|
229 |
+
num_workers=2,
|
230 |
+
shuffle=False)
|
231 |
+
|
232 |
+
eval(args)
|
concept_attention/binary_segmentation_baselines/chefer_vit_explainability/utils/__init__.py
ADDED
File without changes
|
concept_attention/binary_segmentation_baselines/chefer_vit_explainability/utils/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (221 Bytes). View file
|
|
concept_attention/binary_segmentation_baselines/chefer_vit_explainability/utils/__pycache__/confusionmatrix.cpython-310.pyc
ADDED
Binary file (3.55 kB). View file
|
|