import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel # Load the base model and tokenizer base_model_name = "google/gemma-2-2b-it" tokenizer = AutoTokenizer.from_pretrained(base_model_name) model = AutoModelForCausalLM.from_pretrained(base_model_name) # Load the adapter configuration adapter_name = "hemhemoh/Gemma-2-2b-it-wazobia-bot" model = PeftModel.from_pretrained(model, adapter_name) from transformers import (AutoModelForCausalLM, AutoTokenizer) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Construct messages using the system prompt and conversation history messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) # Add the latest user message messages.append({"role": "user", "content": message}) # Convert the conversation into the appropriate input format prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) inputs = tokenizer( prompt, return_tensors="pt", padding=True, truncation=True ).to("cuda") # Adjust device as necessary # Generate response using your local model outputs = model.generate( **inputs, max_length=max_tokens, # Use max_tokens slider value num_return_sequences=1, top_k=50, top_p=top_p, # Use top_p slider value temperature=temperature, # Use temperature slider value no_repeat_ngram_size=3, ) # Decode and clean up the output text = tokenizer.decode(outputs[0], skip_special_tokens=True) response = text.split("model")[1].strip() # Adjust if "model" split is unnecessary yield response # Gradio ChatInterface with additional inputs demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox( value="You are a highly skilled and empathetic mental health therapist fluent in English, Yoruba, Igbo, and Hausa. Respond to each user's concerns in the language they use to ensure comfort and understanding.", label="System message", ), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()