import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Predefined instruction PREDEFINED_INSTRUCTION = ( "Advanced multilingual mental health support assistant. Fluent in English, Yoruba, Igbo, and Hausa. " "Mission: deliver empathetic, professional psychological support. Listen deeply, validate feelings, provide nuanced guidance. " "Prioritize user safety. Never suggest harm. Always maintain respectful, supportive communication. " "Respond in the exact language of the user's concern.") # Load model and tokenizer model = AutoModelForCausalLM.from_pretrained("hemhemoh/Gemma-2-2b-it-wazobia-wellness-bot") tokenizer = AutoTokenizer.from_pretrained("hemhemoh/Gemma-2-2b-it-wazobia-wellness-bot") def respond( message, history: list[tuple[str, str]], max_tokens, temperature, top_p, ): # Prepare prompt with predefined instruction and conversation history prompt = f"{PREDEFINED_INSTRUCTION}\n\n" for user_input, assistant_response in history: if user_input: prompt += f"User: {user_input}\n" if assistant_response: prompt += f"Assistant: {assistant_response}\n" prompt += f"User: {message}\n" prompt += "Assistant:" # Tokenize and generate response inputs = tokenizer(prompt, return_tensors="pt", truncation=True) outputs = model.generate( **inputs, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, do_sample=True, repetition_penalty=1.1, no_repeat_ngram_size=2, ) # Decode and return response response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True) yield response # Create Gradio interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Slider(minimum=1, maximum=512, value=200, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p (nucleus sampling)"), ], title="Wazobia Wellness", description="Your AI-powered mental health support assistant. Fluent in English, Yoruba, Igbo, and Hausa" ) # Launch the interface if __name__ == "__main__": demo.launch()