Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,9 +1,13 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import transformers
|
| 3 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
| 4 |
-
model_name = "t5-base"
|
| 5 |
-
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
| 6 |
-
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
def generate_response(input_text):
|
| 8 |
input_ids = tokenizer.encode(input_text, return_tensors='pt')
|
| 9 |
outputs = model.generate(input_ids,
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import transformers
|
| 3 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
| 4 |
+
#model_name = "t5-base"
|
| 5 |
+
#tokenizer = T5Tokenizer.from_pretrained(model_name)
|
| 6 |
+
#model = T5ForConditionalGeneration.from_pretrained(model_name)
|
| 7 |
+
model_name = "indonesia/gpt-2-small-indonesia"
|
| 8 |
+
model = GPT2LMHeadModel.from_pretrained(model_name)
|
| 9 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
| 10 |
+
|
| 11 |
def generate_response(input_text):
|
| 12 |
input_ids = tokenizer.encode(input_text, return_tensors='pt')
|
| 13 |
outputs = model.generate(input_ids,
|