from transformers import AutoTokenizer, AutoModelForCausalLM import gradio as grad codegen_tkn = AutoTokenizer.from_pretrained('Salesforce/codegen-350M-mono') mdl = AutoModelForCausalLM.from_pretrained('Salesforce/codegen-350M-mono') def codegen(intent): # given input as text which reflects intent of the program. # text = " write a function which takes 2 numbers as input # and returns the larger of the two" input_ids = codegen_tkn(intent, return_tensors = 'pt').input_ids gen_ids = mdl.generate(input_ids, max_length = 1024) response = codegen_tkn.decode(gen_ids[0], skip_special_tokens = True) return response output = grad.Textbox(lines = 1, label = 'Generated Python Code', placeholder = '') inp = grad.Textbox(lines = 1, label = 'Place your intent here') grad.Interface( codegen, inputs = inp, outputs = output ).launch()