OrgStats / preprocess.py
evijit's picture
evijit HF Staff
carryover from evijit
9d2f4f2 verified
# --- START OF FILE preprocess.py ---
import pandas as pd
import numpy as np
import json
import ast
from tqdm.auto import tqdm
import time
import os
import duckdb
import re # Import re for the manual regex check in debug
# --- Constants ---
PROCESSED_PARQUET_FILE_PATH = "models_processed.parquet"
HF_PARQUET_URL = 'https://huggingface.co/datasets/cfahlgren1/hub-stats/resolve/main/models.parquet'
MODEL_SIZE_RANGES = {
"Small (<1GB)": (0, 1),
"Medium (1-5GB)": (1, 5),
"Large (5-20GB)": (5, 20),
"X-Large (20-50GB)": (20, 50),
"XX-Large (>50GB)": (50, float('inf'))
}
# --- Debugging Constant ---
# <<<<<<< SET THE MODEL ID YOU WANT TO DEBUG HERE >>>>>>>
MODEL_ID_TO_DEBUG = "openvla/openvla-7b"
# Example: MODEL_ID_TO_DEBUG = "openai-community/gpt2"
# If you don't have a specific ID, the debug block will just report it's not found.
# --- Utility Functions (extract_model_file_size_gb, extract_org_from_id, process_tags_for_series, get_file_size_category - unchanged from previous correct version) ---
def extract_model_file_size_gb(safetensors_data):
try:
if pd.isna(safetensors_data): return 0.0
data_to_parse = safetensors_data
if isinstance(safetensors_data, str):
try:
if (safetensors_data.startswith('{') and safetensors_data.endswith('}')) or \
(safetensors_data.startswith('[') and safetensors_data.endswith(']')):
data_to_parse = ast.literal_eval(safetensors_data)
else: data_to_parse = json.loads(safetensors_data)
except Exception: return 0.0
if isinstance(data_to_parse, dict) and 'total' in data_to_parse:
total_bytes_val = data_to_parse['total']
try:
size_bytes = float(total_bytes_val)
return size_bytes / (1024 * 1024 * 1024)
except (ValueError, TypeError): return 0.0
return 0.0
except Exception: return 0.0
def extract_org_from_id(model_id):
if pd.isna(model_id): return "unaffiliated"
model_id_str = str(model_id)
return model_id_str.split("/")[0] if "/" in model_id_str else "unaffiliated"
def process_tags_for_series(series_of_tags_values):
processed_tags_accumulator = []
for i, tags_value_from_series in enumerate(tqdm(series_of_tags_values, desc="Standardizing Tags", leave=False, unit="row")):
temp_processed_list_for_row = []
current_value_for_error_msg = str(tags_value_from_series)[:200] # Truncate for long error messages
try:
# Order of checks is important!
# 1. Handle explicit Python lists first
if isinstance(tags_value_from_series, list):
current_tags_in_list = []
for idx_tag, tag_item in enumerate(tags_value_from_series):
try:
# Ensure item is not NaN before string conversion if it might be a float NaN in a list
if pd.isna(tag_item): continue
str_tag = str(tag_item)
stripped_tag = str_tag.strip()
if stripped_tag:
current_tags_in_list.append(stripped_tag)
except Exception as e_inner_list_proc:
print(f"ERROR processing item '{tag_item}' (type: {type(tag_item)}) within a list for row {i}. Error: {e_inner_list_proc}. Original list: {current_value_for_error_msg}")
temp_processed_list_for_row = current_tags_in_list
# 2. Handle NumPy arrays
elif isinstance(tags_value_from_series, np.ndarray):
# Convert to list, then process elements, handling potential NaNs within the array
current_tags_in_list = []
for idx_tag, tag_item in enumerate(tags_value_from_series.tolist()): # .tolist() is crucial
try:
if pd.isna(tag_item): continue # Check for NaN after converting to Python type
str_tag = str(tag_item)
stripped_tag = str_tag.strip()
if stripped_tag:
current_tags_in_list.append(stripped_tag)
except Exception as e_inner_array_proc:
print(f"ERROR processing item '{tag_item}' (type: {type(tag_item)}) within a NumPy array for row {i}. Error: {e_inner_array_proc}. Original array: {current_value_for_error_msg}")
temp_processed_list_for_row = current_tags_in_list
# 3. Handle simple None or pd.NA after lists and arrays (which might contain pd.NA elements handled above)
elif tags_value_from_series is None or pd.isna(tags_value_from_series): # Now pd.isna is safe for scalars
temp_processed_list_for_row = []
# 4. Handle strings (could be JSON-like, list-like, or comma-separated)
elif isinstance(tags_value_from_series, str):
processed_str_tags = []
# Attempt ast.literal_eval for strings that look like lists/tuples
if (tags_value_from_series.startswith('[') and tags_value_from_series.endswith(']')) or \
(tags_value_from_series.startswith('(') and tags_value_from_series.endswith(')')):
try:
evaluated_tags = ast.literal_eval(tags_value_from_series)
if isinstance(evaluated_tags, (list, tuple)): # Check if eval result is a list/tuple
# Recursively process this evaluated list/tuple, as its elements could be complex
# For simplicity here, assume elements are simple strings after eval
current_eval_list = []
for tag_item in evaluated_tags:
if pd.isna(tag_item): continue
str_tag = str(tag_item).strip()
if str_tag: current_eval_list.append(str_tag)
processed_str_tags = current_eval_list
except (ValueError, SyntaxError):
pass # If ast.literal_eval fails, let it fall to JSON or comma split
# If ast.literal_eval didn't populate, try JSON
if not processed_str_tags:
try:
json_tags = json.loads(tags_value_from_series)
if isinstance(json_tags, list):
# Similar to above, assume elements are simple strings after JSON parsing
current_json_list = []
for tag_item in json_tags:
if pd.isna(tag_item): continue
str_tag = str(tag_item).strip()
if str_tag: current_json_list.append(str_tag)
processed_str_tags = current_json_list
except json.JSONDecodeError:
# If not a valid JSON list, fall back to comma splitting as the final string strategy
processed_str_tags = [tag.strip() for tag in tags_value_from_series.split(',') if tag.strip()]
except Exception as e_json_other:
print(f"ERROR during JSON processing for string '{current_value_for_error_msg}' for row {i}. Error: {e_json_other}")
processed_str_tags = [tag.strip() for tag in tags_value_from_series.split(',') if tag.strip()] # Fallback
temp_processed_list_for_row = processed_str_tags
# 5. Fallback for other scalar types (e.g., int, float that are not NaN)
else:
# This path is for non-list, non-ndarray, non-None/NaN, non-string types.
# Or for NaNs that slipped through if they are not None or pd.NA (e.g. float('nan'))
if pd.isna(tags_value_from_series): # Catch any remaining NaNs like float('nan')
temp_processed_list_for_row = []
else:
str_val = str(tags_value_from_series).strip()
temp_processed_list_for_row = [str_val] if str_val else []
processed_tags_accumulator.append(temp_processed_list_for_row)
except Exception as e_outer_tag_proc:
print(f"CRITICAL UNHANDLED ERROR processing row {i}: value '{current_value_for_error_msg}' (type: {type(tags_value_from_series)}). Error: {e_outer_tag_proc}. Appending [].")
processed_tags_accumulator.append([])
return processed_tags_accumulator
def get_file_size_category(file_size_gb_val):
try:
numeric_file_size_gb = float(file_size_gb_val)
if pd.isna(numeric_file_size_gb): numeric_file_size_gb = 0.0
except (ValueError, TypeError): numeric_file_size_gb = 0.0
if 0 <= numeric_file_size_gb < 1: return "Small (<1GB)"
elif 1 <= numeric_file_size_gb < 5: return "Medium (1-5GB)"
elif 5 <= numeric_file_size_gb < 20: return "Large (5-20GB)"
elif 20 <= numeric_file_size_gb < 50: return "X-Large (20-50GB)"
elif numeric_file_size_gb >= 50: return "XX-Large (>50GB)"
else: return "Small (<1GB)"
def main_preprocessor():
print(f"Starting pre-processing script. Output: '{PROCESSED_PARQUET_FILE_PATH}'.")
overall_start_time = time.time()
print(f"Fetching fresh data from Hugging Face: {HF_PARQUET_URL}")
try:
fetch_start_time = time.time()
query = f"SELECT * FROM read_parquet('{HF_PARQUET_URL}')"
df_raw = duckdb.sql(query).df()
data_download_timestamp = pd.Timestamp.now(tz='UTC')
if df_raw is None or df_raw.empty: raise ValueError("Fetched data is empty or None.")
if 'id' not in df_raw.columns: raise ValueError("Fetched data must contain 'id' column.")
print(f"Fetched data in {time.time() - fetch_start_time:.2f}s. Rows: {len(df_raw)}. Downloaded at: {data_download_timestamp.strftime('%Y-%m-%d %H:%M:%S %Z')}")
except Exception as e_fetch:
print(f"ERROR: Could not fetch data from Hugging Face: {e_fetch}.")
return
df = pd.DataFrame()
print("Processing raw data...")
proc_start = time.time()
expected_cols_setup = {
'id': str, 'downloads': float, 'downloadsAllTime': float, 'likes': float,
'pipeline_tag': str, 'tags': object, 'safetensors': object
}
for col_name, target_dtype in expected_cols_setup.items():
if col_name in df_raw.columns:
df[col_name] = df_raw[col_name]
if target_dtype == float: df[col_name] = pd.to_numeric(df[col_name], errors='coerce').fillna(0.0)
elif target_dtype == str: df[col_name] = df[col_name].astype(str).fillna('')
else:
if col_name in ['downloads', 'downloadsAllTime', 'likes']: df[col_name] = 0.0
elif col_name == 'pipeline_tag': df[col_name] = ''
elif col_name == 'tags': df[col_name] = pd.Series([[] for _ in range(len(df_raw))]) # Initialize with empty lists
elif col_name == 'safetensors': df[col_name] = None # Initialize with None
elif col_name == 'id': print("CRITICAL ERROR: 'id' column missing."); return
output_filesize_col_name = 'params'
if output_filesize_col_name in df_raw.columns and pd.api.types.is_numeric_dtype(df_raw[output_filesize_col_name]):
print(f"Using pre-existing '{output_filesize_col_name}' column as file size in GB.")
df[output_filesize_col_name] = pd.to_numeric(df_raw[output_filesize_col_name], errors='coerce').fillna(0.0)
elif 'safetensors' in df.columns:
print(f"Calculating '{output_filesize_col_name}' (file size in GB) from 'safetensors' data...")
df[output_filesize_col_name] = df['safetensors'].apply(extract_model_file_size_gb)
df[output_filesize_col_name] = pd.to_numeric(df[output_filesize_col_name], errors='coerce').fillna(0.0)
else:
print(f"Cannot determine file size. Setting '{output_filesize_col_name}' to 0.0.")
df[output_filesize_col_name] = 0.0
df['data_download_timestamp'] = data_download_timestamp
print(f"Added 'data_download_timestamp' column.")
print("Categorizing models by file size...")
df['size_category'] = df[output_filesize_col_name].apply(get_file_size_category)
print("Standardizing 'tags' column...")
df['tags'] = process_tags_for_series(df['tags']) # This now uses tqdm internally
# --- START DEBUGGING BLOCK ---
# This block will execute before the main tag processing loop
if MODEL_ID_TO_DEBUG and MODEL_ID_TO_DEBUG in df['id'].values: # Check if ID exists
print(f"\n--- Pre-Loop Debugging for Model ID: {MODEL_ID_TO_DEBUG} ---")
# 1. Check the 'tags' column content after process_tags_for_series
model_specific_tags_list = df.loc[df['id'] == MODEL_ID_TO_DEBUG, 'tags'].iloc[0]
print(f"1. Tags from df['tags'] (after process_tags_for_series): {model_specific_tags_list}")
print(f" Type of tags: {type(model_specific_tags_list)}")
if isinstance(model_specific_tags_list, list):
for i, tag_item in enumerate(model_specific_tags_list):
print(f" Tag item {i}: '{tag_item}' (type: {type(tag_item)}, len: {len(str(tag_item))})")
# Detailed check for 'robotics' specifically
if 'robotics' in str(tag_item).lower():
print(f" DEBUG: Found 'robotics' substring in '{tag_item}'")
print(f" - str(tag_item).lower().strip(): '{str(tag_item).lower().strip()}'")
print(f" - Is it exactly 'robotics'?: {str(tag_item).lower().strip() == 'robotics'}")
print(f" - Ordinals: {[ord(c) for c in str(tag_item)]}")
# 2. Simulate temp_tags_joined for this specific model
if isinstance(model_specific_tags_list, list):
simulated_temp_tags_joined = '~~~'.join(str(t).lower().strip() for t in model_specific_tags_list if pd.notna(t) and str(t).strip())
else:
simulated_temp_tags_joined = ''
print(f"2. Simulated 'temp_tags_joined' for this model: '{simulated_temp_tags_joined}'")
# 3. Simulate 'has_robot' check for this model
robot_keywords = ['robot', 'robotics']
robot_pattern = '|'.join(robot_keywords)
manual_robot_check = bool(re.search(robot_pattern, simulated_temp_tags_joined, flags=re.IGNORECASE))
print(f"3. Manual regex check for 'has_robot' ('{robot_pattern}' in '{simulated_temp_tags_joined}'): {manual_robot_check}")
print(f"--- End Pre-Loop Debugging for Model ID: {MODEL_ID_TO_DEBUG} ---\n")
elif MODEL_ID_TO_DEBUG:
print(f"DEBUG: Model ID '{MODEL_ID_TO_DEBUG}' not found in DataFrame for pre-loop debugging.")
# --- END DEBUGGING BLOCK ---
print("Vectorized creation of cached tag columns...")
tag_time = time.time()
# This is the original temp_tags_joined creation:
df['temp_tags_joined'] = df['tags'].apply(
lambda tl: '~~~'.join(str(t).lower().strip() for t in tl if pd.notna(t) and str(t).strip()) if isinstance(tl, list) else ''
)
tag_map = {
'has_audio': ['audio'], 'has_speech': ['speech'], 'has_music': ['music'],
'has_robot': ['robot', 'robotics','openvla','vla'],
'has_bio': ['bio'], 'has_med': ['medic', 'medical'],
'has_series': ['series', 'time-series', 'timeseries'],
'has_video': ['video'], 'has_image': ['image', 'vision'],
'has_text': ['text', 'nlp', 'llm']
}
for col, kws in tag_map.items():
pattern = '|'.join(kws)
df[col] = df['temp_tags_joined'].str.contains(pattern, na=False, case=False, regex=True)
df['has_science'] = (
df['temp_tags_joined'].str.contains('science', na=False, case=False, regex=True) &
~df['temp_tags_joined'].str.contains('bigscience', na=False, case=False, regex=True)
)
del df['temp_tags_joined'] # Clean up temporary column
df['is_audio_speech'] = (df['has_audio'] | df['has_speech'] |
df['pipeline_tag'].str.contains('audio|speech', case=False, na=False, regex=True))
df['is_biomed'] = df['has_bio'] | df['has_med']
print(f"Vectorized tag columns created in {time.time() - tag_time:.2f}s.")
# --- POST-LOOP DIAGNOSTIC for has_robot & a specific model ---
if 'has_robot' in df.columns:
print("\n--- 'has_robot' Diagnostics (Preprocessor - Post-Loop) ---")
print(df['has_robot'].value_counts(dropna=False))
if MODEL_ID_TO_DEBUG and MODEL_ID_TO_DEBUG in df['id'].values:
model_has_robot_val = df.loc[df['id'] == MODEL_ID_TO_DEBUG, 'has_robot'].iloc[0]
print(f"Value of 'has_robot' for model '{MODEL_ID_TO_DEBUG}': {model_has_robot_val}")
if model_has_robot_val:
print(f" Original tags for '{MODEL_ID_TO_DEBUG}': {df.loc[df['id'] == MODEL_ID_TO_DEBUG, 'tags'].iloc[0]}")
if df['has_robot'].any():
print("Sample models flagged as 'has_robot':")
print(df[df['has_robot']][['id', 'tags', 'has_robot']].head(5))
else:
print("No models were flagged as 'has_robot' after processing.")
print("--------------------------------------------------------\n")
# --- END POST-LOOP DIAGNOSTIC ---
print("Adding organization column...")
df['organization'] = df['id'].apply(extract_org_from_id)
# Drop safetensors if params was calculated from it, and params didn't pre-exist as numeric
if 'safetensors' in df.columns and \
not (output_filesize_col_name in df_raw.columns and pd.api.types.is_numeric_dtype(df_raw[output_filesize_col_name])):
df = df.drop(columns=['safetensors'], errors='ignore')
final_expected_cols = [
'id', 'downloads', 'downloadsAllTime', 'likes', 'pipeline_tag', 'tags',
'params', 'size_category', 'organization',
'has_audio', 'has_speech', 'has_music', 'has_robot', 'has_bio', 'has_med',
'has_series', 'has_video', 'has_image', 'has_text', 'has_science',
'is_audio_speech', 'is_biomed',
'data_download_timestamp'
]
# Ensure all final columns exist, adding defaults if necessary
for col in final_expected_cols:
if col not in df.columns:
print(f"Warning: Final expected column '{col}' is missing! Defaulting appropriately.")
if col == 'params': df[col] = 0.0
elif col == 'size_category': df[col] = "Small (<1GB)" # Default size category
elif 'has_' in col or 'is_' in col : df[col] = False # Default boolean flags to False
elif col == 'data_download_timestamp': df[col] = pd.NaT # Default timestamp to NaT
print(f"Data processing completed in {time.time() - proc_start:.2f}s.")
try:
print(f"Saving processed data to: {PROCESSED_PARQUET_FILE_PATH}")
df_to_save = df[final_expected_cols].copy() # Ensure only expected columns are saved
df_to_save.to_parquet(PROCESSED_PARQUET_FILE_PATH, index=False, engine='pyarrow')
print(f"Successfully saved processed data.")
except Exception as e_save:
print(f"ERROR: Could not save processed data: {e_save}")
return
total_elapsed_script = time.time() - overall_start_time
print(f"Pre-processing finished. Total time: {total_elapsed_script:.2f}s. Final Parquet shape: {df_to_save.shape}")
if __name__ == "__main__":
if os.path.exists(PROCESSED_PARQUET_FILE_PATH):
print(f"Deleting existing '{PROCESSED_PARQUET_FILE_PATH}' to ensure fresh processing...")
try: os.remove(PROCESSED_PARQUET_FILE_PATH)
except OSError as e: print(f"Error deleting file: {e}. Please delete manually and rerun."); exit()
main_preprocessor()
if os.path.exists(PROCESSED_PARQUET_FILE_PATH):
print(f"\nTo verify, load parquet and check 'has_robot' and its 'tags':")
print(f"import pandas as pd; df_chk = pd.read_parquet('{PROCESSED_PARQUET_FILE_PATH}')")
print(f"print(df_chk['has_robot'].value_counts())")
if MODEL_ID_TO_DEBUG:
print(f"print(df_chk[df_chk['id'] == '{MODEL_ID_TO_DEBUG}'][['id', 'tags', 'has_robot']])")
else:
print(f"print(df_chk[df_chk['has_robot']][['id', 'tags', 'has_robot']].head())")