Spaces:
Runtime error
Runtime error
Commit
·
935bf6f
1
Parent(s):
ca9b3d4
Update with h2oGPT hash 8513731040927b5a455110324918954b09460b05
Browse files- src/gen.py +10 -3
- src/serpapi.py +167 -0
src/gen.py
CHANGED
|
@@ -779,6 +779,10 @@ def main(
|
|
| 779 |
# always allow DISABLED
|
| 780 |
if LangChainMode.DISABLED.value not in langchain_modes:
|
| 781 |
langchain_modes.append(LangChainMode.DISABLED.value)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 782 |
|
| 783 |
# update
|
| 784 |
langchain_mode_paths = str_to_dict(langchain_mode_paths)
|
|
@@ -1036,7 +1040,7 @@ def main(
|
|
| 1036 |
print(f"Generating model with params:\n{locals_print}", flush=True)
|
| 1037 |
print("Command: %s\nHash: %s" % (str(' '.join(sys.argv)), git_hash), flush=True)
|
| 1038 |
|
| 1039 |
-
if langchain_mode !=
|
| 1040 |
# SECOND PLACE where LangChain referenced, but all imports are kept local so not required
|
| 1041 |
from gpt_langchain import prep_langchain, get_some_dbs_from_hf, get_persist_directory
|
| 1042 |
if is_hf:
|
|
@@ -1233,7 +1237,8 @@ def main(
|
|
| 1233 |
**all_kwargs))
|
| 1234 |
score_model_state0 = dict(model=smodel, tokenizer=stokenizer, device=sdevice,
|
| 1235 |
base_model=score_model, tokenizer_base_model='', lora_weights='',
|
| 1236 |
-
inference_server='', prompt_type='', prompt_dict=''
|
|
|
|
| 1237 |
|
| 1238 |
if enable_captions:
|
| 1239 |
if pre_load_caption_model:
|
|
@@ -1244,7 +1249,9 @@ def main(
|
|
| 1244 |
else:
|
| 1245 |
caption_loader = False
|
| 1246 |
|
| 1247 |
-
if pre_load_embedding_model and
|
|
|
|
|
|
|
| 1248 |
from src.gpt_langchain import get_embedding
|
| 1249 |
hf_embedding_model = dict(name=hf_embedding_model,
|
| 1250 |
model=get_embedding(use_openai_embedding, hf_embedding_model=hf_embedding_model,
|
|
|
|
| 779 |
# always allow DISABLED
|
| 780 |
if LangChainMode.DISABLED.value not in langchain_modes:
|
| 781 |
langchain_modes.append(LangChainMode.DISABLED.value)
|
| 782 |
+
if not have_langchain:
|
| 783 |
+
# only allow disabled, not even LLM that is langchain related
|
| 784 |
+
langchain_mode = LangChainMode.DISABLED.value
|
| 785 |
+
langchain_modes = [langchain_mode]
|
| 786 |
|
| 787 |
# update
|
| 788 |
langchain_mode_paths = str_to_dict(langchain_mode_paths)
|
|
|
|
| 1040 |
print(f"Generating model with params:\n{locals_print}", flush=True)
|
| 1041 |
print("Command: %s\nHash: %s" % (str(' '.join(sys.argv)), git_hash), flush=True)
|
| 1042 |
|
| 1043 |
+
if langchain_mode != LangChainMode.DISABLED.value:
|
| 1044 |
# SECOND PLACE where LangChain referenced, but all imports are kept local so not required
|
| 1045 |
from gpt_langchain import prep_langchain, get_some_dbs_from_hf, get_persist_directory
|
| 1046 |
if is_hf:
|
|
|
|
| 1237 |
**all_kwargs))
|
| 1238 |
score_model_state0 = dict(model=smodel, tokenizer=stokenizer, device=sdevice,
|
| 1239 |
base_model=score_model, tokenizer_base_model='', lora_weights='',
|
| 1240 |
+
inference_server='', prompt_type='', prompt_dict='',
|
| 1241 |
+
visible_models=None, h2ogpt_key=None)
|
| 1242 |
|
| 1243 |
if enable_captions:
|
| 1244 |
if pre_load_caption_model:
|
|
|
|
| 1249 |
else:
|
| 1250 |
caption_loader = False
|
| 1251 |
|
| 1252 |
+
if pre_load_embedding_model and \
|
| 1253 |
+
langchain_mode != LangChainMode.DISABLED.value and \
|
| 1254 |
+
not use_openai_embedding:
|
| 1255 |
from src.gpt_langchain import get_embedding
|
| 1256 |
hf_embedding_model = dict(name=hf_embedding_model,
|
| 1257 |
model=get_embedding(use_openai_embedding, hf_embedding_model=hf_embedding_model,
|
src/serpapi.py
ADDED
|
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import functools
|
| 2 |
+
import typing
|
| 3 |
+
|
| 4 |
+
import aiohttp
|
| 5 |
+
from langchain.docstore.document import Document
|
| 6 |
+
from langchain import SerpAPIWrapper
|
| 7 |
+
|
| 8 |
+
from src.utils_langchain import _chunk_sources, add_parser, _add_meta
|
| 9 |
+
from urllib.parse import urlparse
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class H2OSerpAPIWrapper(SerpAPIWrapper):
|
| 13 |
+
def get_search_documents(self, query,
|
| 14 |
+
query_action=True,
|
| 15 |
+
chunk=True, chunk_size=512,
|
| 16 |
+
db_type='chroma',
|
| 17 |
+
headsize=50,
|
| 18 |
+
top_k_docs=-1):
|
| 19 |
+
docs = self.run(query, headsize)
|
| 20 |
+
|
| 21 |
+
chunk_sources = functools.partial(_chunk_sources, chunk=chunk, chunk_size=chunk_size, db_type=db_type)
|
| 22 |
+
docs = chunk_sources(docs)
|
| 23 |
+
|
| 24 |
+
# choose chunk type
|
| 25 |
+
if query_action:
|
| 26 |
+
docs = [x for x in docs if x.metadata['chunk_id'] >= 0]
|
| 27 |
+
else:
|
| 28 |
+
docs = [x for x in docs if x.metadata['chunk_id'] == -1]
|
| 29 |
+
|
| 30 |
+
# get score assuming search results scale with ranking
|
| 31 |
+
delta = 0.05
|
| 32 |
+
[x.metadata.update(score=0.1 + delta * x.metadata['chunk_id'] if x.metadata['chunk_id'] >= 0 else -1) for x in
|
| 33 |
+
docs]
|
| 34 |
+
|
| 35 |
+
# ensure see all results up to cutoff or mixing with non-web docs
|
| 36 |
+
if top_k_docs >= 1:
|
| 37 |
+
top_k_docs = max(top_k_docs, len(docs))
|
| 38 |
+
|
| 39 |
+
return docs, top_k_docs
|
| 40 |
+
|
| 41 |
+
async def arun(self, query: str, headsize: int, **kwargs: typing.Any) -> list:
|
| 42 |
+
"""Run query through SerpAPI and parse result async."""
|
| 43 |
+
return self._process_response(await self.aresults(query), query, headsize)
|
| 44 |
+
|
| 45 |
+
def run(self, query: str, headsize: int, **kwargs: typing.Any) -> list:
|
| 46 |
+
"""Run query through SerpAPI and parse result."""
|
| 47 |
+
return self._process_response(self.results(query), query, headsize)
|
| 48 |
+
|
| 49 |
+
@staticmethod
|
| 50 |
+
def _process_response(res: dict, query: str, headsize: int) -> list:
|
| 51 |
+
try:
|
| 52 |
+
return H2OSerpAPIWrapper.__process_response(res, query, headsize)
|
| 53 |
+
except Exception as e:
|
| 54 |
+
print("SERP search failed: %s" % str(e))
|
| 55 |
+
return []
|
| 56 |
+
|
| 57 |
+
@staticmethod
|
| 58 |
+
def __process_response(res: dict, query: str, headsize: int) -> list:
|
| 59 |
+
docs = []
|
| 60 |
+
|
| 61 |
+
res1 = SerpAPIWrapper._process_response(res)
|
| 62 |
+
if res1:
|
| 63 |
+
if isinstance(res1, str) and not res1.startswith('['): # avoid snippets
|
| 64 |
+
docs += [Document(page_content='Web search result %s: ' % len(docs) + res1,
|
| 65 |
+
metadata=dict(source='Web Search %s for %s' % (len(docs), query), score=0.0))]
|
| 66 |
+
elif isinstance(res1, list):
|
| 67 |
+
for x in res1:
|
| 68 |
+
date = ''
|
| 69 |
+
content = ''
|
| 70 |
+
if 'source' in x:
|
| 71 |
+
source = x['source']
|
| 72 |
+
content += '%s says' % source
|
| 73 |
+
else:
|
| 74 |
+
content = 'Web search result %s: ' % len(docs)
|
| 75 |
+
if 'date' in x:
|
| 76 |
+
date = x['date']
|
| 77 |
+
content += ' %s' % date
|
| 78 |
+
if 'title' in x:
|
| 79 |
+
content += ': %s' % x['title']
|
| 80 |
+
if 'snippet' in x:
|
| 81 |
+
content += ': %s' % x['snippet']
|
| 82 |
+
if 'link' in x:
|
| 83 |
+
link = x['link']
|
| 84 |
+
domain = urlparse(link).netloc
|
| 85 |
+
font_size = 2
|
| 86 |
+
source_name = domain
|
| 87 |
+
http_content = """<font size="%s"><a href="%s" target="_blank" rel="noopener noreferrer">%s</a></font>""" % (
|
| 88 |
+
font_size, link, source_name)
|
| 89 |
+
source = 'Web Search %s' % len(docs) + \
|
| 90 |
+
' from Date: %s Domain: %s Link: %s' % (date, domain, http_content)
|
| 91 |
+
if date:
|
| 92 |
+
content += ' around %s' % date
|
| 93 |
+
content += ' according to %s' % domain
|
| 94 |
+
else:
|
| 95 |
+
source = 'Web Search %s for %s' % (len(docs), query)
|
| 96 |
+
docs += [Document(page_content=content, metadata=dict(source=source, score=0.0))]
|
| 97 |
+
|
| 98 |
+
if "knowledge_graph" in res.keys():
|
| 99 |
+
knowledge_graph = res["knowledge_graph"]
|
| 100 |
+
title = knowledge_graph["title"] if "title" in knowledge_graph else ""
|
| 101 |
+
if "description" in knowledge_graph.keys():
|
| 102 |
+
docs += [Document(page_content='Web search result %s: ' % len(docs) + knowledge_graph["description"],
|
| 103 |
+
metadata=dict(source='Web Search %s with knowledge_graph description for %s' % (
|
| 104 |
+
len(docs), query), score=0.0))]
|
| 105 |
+
for key, value in knowledge_graph.items():
|
| 106 |
+
if (
|
| 107 |
+
type(key) == str
|
| 108 |
+
and type(value) == str
|
| 109 |
+
and key not in ["title", "description"]
|
| 110 |
+
and not key.endswith("_stick")
|
| 111 |
+
and not key.endswith("_link")
|
| 112 |
+
and not value.startswith("http")
|
| 113 |
+
):
|
| 114 |
+
docs += [Document(page_content='Web search result %s: ' % len(docs) + f"{title} {key}: {value}.",
|
| 115 |
+
metadata=dict(
|
| 116 |
+
source='Web Search %s with knowledge_graph for %s' % (len(docs), query),
|
| 117 |
+
score=0.0))]
|
| 118 |
+
if "organic_results" in res.keys():
|
| 119 |
+
for org_res in res["organic_results"]:
|
| 120 |
+
keys_to_try = ['snippet', 'snippet_highlighted_words', 'rich_snippet', 'rich_snippet_table', 'link']
|
| 121 |
+
for key in keys_to_try:
|
| 122 |
+
if key in org_res.keys():
|
| 123 |
+
date = ''
|
| 124 |
+
domain = ''
|
| 125 |
+
link = ''
|
| 126 |
+
snippet1 = ''
|
| 127 |
+
if key != 'link':
|
| 128 |
+
snippet1 = org_res[key]
|
| 129 |
+
if 'date' in org_res.keys():
|
| 130 |
+
date = org_res['date']
|
| 131 |
+
snippet1 += ' on %s' % date
|
| 132 |
+
else:
|
| 133 |
+
date = 'unknown date'
|
| 134 |
+
if 'link' in org_res.keys():
|
| 135 |
+
link = org_res['link']
|
| 136 |
+
domain = urlparse(link).netloc
|
| 137 |
+
if key == 'link':
|
| 138 |
+
# worst case, only url might have REST info
|
| 139 |
+
snippet1 += ' Link at %s: <a href="%s">%s</a>' % (domain, link, domain)
|
| 140 |
+
else:
|
| 141 |
+
snippet1 += ' according to %s' % domain
|
| 142 |
+
if snippet1:
|
| 143 |
+
font_size = 2
|
| 144 |
+
source_name = domain
|
| 145 |
+
http_content = """<font size="%s"><a href="%s" target="_blank" rel="noopener noreferrer">%s</a></font>""" % (
|
| 146 |
+
font_size, link, source_name)
|
| 147 |
+
source = 'Web Search %s' % len(docs) + \
|
| 148 |
+
' from Date: %s Domain: %s Link: %s' % (date, domain, http_content)
|
| 149 |
+
domain_simple = domain.replace('www.', '').replace('.com', '')
|
| 150 |
+
snippet1 = '%s says on %s: %s' % (domain_simple, date, snippet1)
|
| 151 |
+
docs += [Document(page_content=snippet1, metadata=dict(source=source), score=0.0)]
|
| 152 |
+
break
|
| 153 |
+
if "buying_guide" in res.keys():
|
| 154 |
+
docs += [Document(page_content='Web search result %s: ' % len(docs) + res["buying_guide"],
|
| 155 |
+
metadata=dict(source='Web Search %s with buying_guide for %s' % (len(docs), query)),
|
| 156 |
+
score=0.0)]
|
| 157 |
+
if "local_results" in res.keys() and "places" in res["local_results"].keys():
|
| 158 |
+
docs += [Document(page_content='Web search result %s: ' % len(docs) + res["local_results"]["places"],
|
| 159 |
+
metadata=dict(
|
| 160 |
+
source='Web Search %s with local_results_places for %s' % (len(docs), query)),
|
| 161 |
+
score=0.0)]
|
| 162 |
+
|
| 163 |
+
# add meta
|
| 164 |
+
add_meta = functools.partial(_add_meta, headsize=headsize, parser='SERPAPI')
|
| 165 |
+
add_meta(docs, query)
|
| 166 |
+
|
| 167 |
+
return docs
|