|
import streamlit as st |
|
|
|
x = st.slider('Select a value') |
|
st.write(x, 'squared is', x * x) |
|
|
|
from diffusers import DiffusionPipeline |
|
import torch |
|
|
|
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float32, use_safetensors=True, variant="fp32") |
|
|
|
|
|
|
|
|
|
|
|
prompt = "An astronaut riding a green horse" |
|
|
|
images = pipe(prompt=prompt).images[0] |
|
|
|
st.image(images) |
|
|
|
st.write("hello") |
|
|
|
""" |
|
import json |
|
import requests |
|
API_URL = "https://api-inference.huggingface.co/models/gpt2" |
|
token = "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" |
|
headers = {"Authorization": f"Bearer {token}"} |
|
def query(payload): |
|
data = json.dumps(payload) |
|
response = requests.request("POST", API_URL, headers=headers, data=data) |
|
return json.loads(response.content.decode("utf-8")) |
|
data = query("Can you please let us know more details about your ") |
|
print(data) |
|
""" |