Re-upload project
Browse files- .gitattributes +33 -0
- FairEval.py +1651 -0
- README.md +96 -0
- app.py +6 -0
- fairevaluation.py +237 -0
- requirements.txt +3 -0
.gitattributes
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
FairEval.py
ADDED
|
@@ -0,0 +1,1651 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
'''
|
| 4 |
+
Created 09/2021
|
| 5 |
+
|
| 6 |
+
@author: Katrin Ortmann
|
| 7 |
+
'''
|
| 8 |
+
|
| 9 |
+
import argparse
|
| 10 |
+
import os
|
| 11 |
+
import sys
|
| 12 |
+
import re
|
| 13 |
+
from typing import Iterable
|
| 14 |
+
from io import TextIOWrapper
|
| 15 |
+
from copy import deepcopy
|
| 16 |
+
|
| 17 |
+
#####################################
|
| 18 |
+
|
| 19 |
+
def precision(evaldict, version="traditional", weights={}):
|
| 20 |
+
"""
|
| 21 |
+
Calculate traditional, fair or weighted precision value.
|
| 22 |
+
|
| 23 |
+
Precision is calculated as the number of true positives
|
| 24 |
+
divided by the number of true positives plus false positives
|
| 25 |
+
plus (optionally) additional error types.
|
| 26 |
+
|
| 27 |
+
Input:
|
| 28 |
+
- A dictionary with error types as keys and counts as values, e.g.,
|
| 29 |
+
{"TP" : 10, "FP" : 2, "LE" : 1, ...}
|
| 30 |
+
|
| 31 |
+
For 'traditional' evaluation, true positives (key: TP) and
|
| 32 |
+
false positives (key: FP) are required.
|
| 33 |
+
The 'fair' evaluation is based on true positives (TP),
|
| 34 |
+
false positives (FP), labeling errors (LE), boundary errors (BE)
|
| 35 |
+
and labeling-boundary errors (LBE).
|
| 36 |
+
The 'weighted' evaluation can include any error type
|
| 37 |
+
that is given as key in the weight dictionary.
|
| 38 |
+
For missing keys, the count is set to 0.
|
| 39 |
+
|
| 40 |
+
- The desired evaluation method. Options are 'traditional',
|
| 41 |
+
'fair', and 'weighted'. If no weight dictionary is specified,
|
| 42 |
+
'weighted' is identical to 'fair'.
|
| 43 |
+
|
| 44 |
+
- A weight dictionary to specify how much an error type should
|
| 45 |
+
count as one of the traditional error types (or as true positive).
|
| 46 |
+
Per default, every traditional error is counted as one error (or true positive)
|
| 47 |
+
and each error of the additional types is counted as half false positive and half false negative:
|
| 48 |
+
|
| 49 |
+
{"TP" : {"TP" : 1},
|
| 50 |
+
"FP" : {"FP" : 1},
|
| 51 |
+
"FN" : {"FN" : 1},
|
| 52 |
+
"LE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
| 53 |
+
"BE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
| 54 |
+
"LBE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5}}
|
| 55 |
+
|
| 56 |
+
Other suggested weights to count boundary errors as half true positives:
|
| 57 |
+
|
| 58 |
+
{"TP" : {"TP" : 1},
|
| 59 |
+
"FP" : {"FP" : 1},
|
| 60 |
+
"FN" : {"FN" : 1},
|
| 61 |
+
"LE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
| 62 |
+
"BE" : {"TP" : 0.5, "FP" : 0.25, "FN" : 0.25},
|
| 63 |
+
"LBE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5}}
|
| 64 |
+
|
| 65 |
+
Or to include different types of boundary errors:
|
| 66 |
+
|
| 67 |
+
{"TP" : {"TP" : 1},
|
| 68 |
+
"FP" : {"FP" : 1},
|
| 69 |
+
"FN" : {"FN" : 1},
|
| 70 |
+
"LE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
| 71 |
+
"LBE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
| 72 |
+
"BEO" : {"TP" : 0.5, "FP" : 0.25, "FN" : 0.25},
|
| 73 |
+
"BES" : {"TP" : 0.5, "FP" : 0, "FN" : 0.5},
|
| 74 |
+
"BEL" : {"TP" : 0.5, "FP" : 0.5, "FN" : 0}}
|
| 75 |
+
|
| 76 |
+
Output:
|
| 77 |
+
The precision for the given input values.
|
| 78 |
+
In case of a ZeroDivisionError, the precision is set to 0.
|
| 79 |
+
|
| 80 |
+
"""
|
| 81 |
+
traditional_weights = {
|
| 82 |
+
"TP" : {"TP" : 1},
|
| 83 |
+
"FP" : {"FP" : 1},
|
| 84 |
+
"FN" : {"FN" : 1}
|
| 85 |
+
}
|
| 86 |
+
default_fair_weights = {
|
| 87 |
+
"TP" : {"TP" : 1},
|
| 88 |
+
"FP" : {"FP" : 1},
|
| 89 |
+
"FN" : {"FN" : 1},
|
| 90 |
+
"LE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
| 91 |
+
"BE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
| 92 |
+
"LBE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5}
|
| 93 |
+
}
|
| 94 |
+
try:
|
| 95 |
+
tp = 0
|
| 96 |
+
fp = 0
|
| 97 |
+
|
| 98 |
+
#Set default weights for traditional evaluation
|
| 99 |
+
if version == "traditional":
|
| 100 |
+
weights = traditional_weights
|
| 101 |
+
|
| 102 |
+
#Set weights to default
|
| 103 |
+
#for fair evaluation or if no weights are given
|
| 104 |
+
elif version == "fair" or not weights:
|
| 105 |
+
weights = default_fair_weights
|
| 106 |
+
|
| 107 |
+
#Add weighted errors to true positive count
|
| 108 |
+
tp += sum(
|
| 109 |
+
[w.get("TP", 0) * evaldict.get(error, 0) for error, w in weights.items()]
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
#Add weighted errors to false positive count
|
| 113 |
+
fp += sum(
|
| 114 |
+
[w.get("FP", 0) * evaldict.get(error, 0) for error, w in weights.items()]
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
#Calculate precision
|
| 118 |
+
return tp / (tp + fp)
|
| 119 |
+
|
| 120 |
+
#Output 0 if there is neither true nor false positives
|
| 121 |
+
except ZeroDivisionError:
|
| 122 |
+
return 0.0
|
| 123 |
+
|
| 124 |
+
######################
|
| 125 |
+
|
| 126 |
+
def recall(evaldict, version="traditional", weights={}):
|
| 127 |
+
"""
|
| 128 |
+
Calculate traditional, fair or weighted recall value.
|
| 129 |
+
|
| 130 |
+
Recall is calculated as the number of true positives
|
| 131 |
+
divided by the number of true positives plus false negatives
|
| 132 |
+
plus (optionally) additional error types.
|
| 133 |
+
|
| 134 |
+
Input:
|
| 135 |
+
- A dictionary with error types as keys and counts as values, e.g.,
|
| 136 |
+
{"TP" : 10, "FN" : 2, "LE" : 1, ...}
|
| 137 |
+
|
| 138 |
+
For 'traditional' evaluation, true positives (key: TP) and
|
| 139 |
+
false negatives (key: FN) are required.
|
| 140 |
+
The 'fair' evaluation is based on true positives (TP),
|
| 141 |
+
false negatives (FN), labeling errors (LE), boundary errors (BE)
|
| 142 |
+
and labeling-boundary errors (LBE).
|
| 143 |
+
The 'weighted' evaluation can include any error type
|
| 144 |
+
that is given as key in the weight dictionary.
|
| 145 |
+
For missing keys, the count is set to 0.
|
| 146 |
+
|
| 147 |
+
- The desired evaluation method. Options are 'traditional',
|
| 148 |
+
'fair', and 'weighted'. If no weight dictionary is specified,
|
| 149 |
+
'weighted' is identical to 'fair'.
|
| 150 |
+
|
| 151 |
+
- A weight dictionary to specify how much an error type should
|
| 152 |
+
count as one of the traditional error types (or as true positive).
|
| 153 |
+
Per default, every traditional error is counted as one error (or true positive)
|
| 154 |
+
and each error of the additional types is counted as half false positive and half false negative:
|
| 155 |
+
|
| 156 |
+
{"TP" : {"TP" : 1},
|
| 157 |
+
"FP" : {"FP" : 1},
|
| 158 |
+
"FN" : {"FN" : 1},
|
| 159 |
+
"LE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
| 160 |
+
"BE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
| 161 |
+
"LBE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5}}
|
| 162 |
+
|
| 163 |
+
Other suggested weights to count boundary errors as half true positives:
|
| 164 |
+
|
| 165 |
+
{"TP" : {"TP" : 1},
|
| 166 |
+
"FP" : {"FP" : 1},
|
| 167 |
+
"FN" : {"FN" : 1},
|
| 168 |
+
"LE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
| 169 |
+
"BE" : {"TP" : 0.5, "FP" : 0.25, "FN" : 0.25},
|
| 170 |
+
"LBE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5}}
|
| 171 |
+
|
| 172 |
+
Or to include different types of boundary errors:
|
| 173 |
+
|
| 174 |
+
{"TP" : {"TP" : 1},
|
| 175 |
+
"FP" : {"FP" : 1},
|
| 176 |
+
"FN" : {"FN" : 1},
|
| 177 |
+
"LE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
| 178 |
+
"LBE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
| 179 |
+
"BEO" : {"TP" : 0.5, "FP" : 0.25, "FN" : 0.25},
|
| 180 |
+
"BES" : {"TP" : 0.5, "FP" : 0, "FN" : 0.5},
|
| 181 |
+
"BEL" : {"TP" : 0.5, "FP" : 0.5, "FN" : 0}}
|
| 182 |
+
|
| 183 |
+
Output:
|
| 184 |
+
The recall for the given input values.
|
| 185 |
+
In case of a ZeroDivisionError, the recall is set to 0.
|
| 186 |
+
|
| 187 |
+
"""
|
| 188 |
+
traditional_weights = {
|
| 189 |
+
"TP" : {"TP" : 1},
|
| 190 |
+
"FP" : {"FP" : 1},
|
| 191 |
+
"FN" : {"FN" : 1}
|
| 192 |
+
}
|
| 193 |
+
default_fair_weights = {
|
| 194 |
+
"TP" : {"TP" : 1},
|
| 195 |
+
"FP" : {"FP" : 1},
|
| 196 |
+
"FN" : {"FN" : 1},
|
| 197 |
+
"LE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
| 198 |
+
"BE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
| 199 |
+
"LBE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5}
|
| 200 |
+
}
|
| 201 |
+
try:
|
| 202 |
+
tp = 0
|
| 203 |
+
fn = 0
|
| 204 |
+
|
| 205 |
+
#Set default weights for traditional evaluation
|
| 206 |
+
if version == "traditional":
|
| 207 |
+
weights = traditional_weights
|
| 208 |
+
|
| 209 |
+
#Set weights to default
|
| 210 |
+
#for fair evaluation or if no weights are given
|
| 211 |
+
elif version == "fair" or not weights:
|
| 212 |
+
weights = default_fair_weights
|
| 213 |
+
|
| 214 |
+
#Add weighted errors to true positive count
|
| 215 |
+
tp += sum(
|
| 216 |
+
[w.get("TP", 0) * evaldict.get(error, 0) for error, w in weights.items()]
|
| 217 |
+
)
|
| 218 |
+
|
| 219 |
+
#Add weighted errors to false negative count
|
| 220 |
+
fn += sum(
|
| 221 |
+
[w.get("FN", 0) * evaldict.get(error, 0) for error, w in weights.items()]
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
#Calculate recall
|
| 225 |
+
return tp / (tp + fn)
|
| 226 |
+
|
| 227 |
+
#Return zero if there are neither true positives nor false negatives
|
| 228 |
+
except ZeroDivisionError:
|
| 229 |
+
return 0.0
|
| 230 |
+
|
| 231 |
+
######################
|
| 232 |
+
|
| 233 |
+
def fscore(evaldict):
|
| 234 |
+
"""
|
| 235 |
+
Calculates F1-Score from given precision and recall values.
|
| 236 |
+
|
| 237 |
+
Input: A dictionary with a precision (key: Prec) and recall (key: Rec) value.
|
| 238 |
+
Output: The F1-Score. In case of a ZeroDivisionError, the F1-Score is set to 0.
|
| 239 |
+
"""
|
| 240 |
+
try:
|
| 241 |
+
return 2 * (evaldict.get("Prec", 0) * evaldict.get("Rec", 0)) \
|
| 242 |
+
/ (evaldict.get("Prec", 0) + evaldict.get("Rec", 0))
|
| 243 |
+
except ZeroDivisionError:
|
| 244 |
+
return 0.0
|
| 245 |
+
|
| 246 |
+
######################
|
| 247 |
+
|
| 248 |
+
def overlap_type(span1, span2):
|
| 249 |
+
"""
|
| 250 |
+
Determine the error type of two (overlapping) spans.
|
| 251 |
+
|
| 252 |
+
The function checks, if and how span1 and span2 overlap.
|
| 253 |
+
The first span serves as the basis against which the second
|
| 254 |
+
span is evaluated.
|
| 255 |
+
|
| 256 |
+
span1 ---XXXX---
|
| 257 |
+
span2 ---XXXX--- TP (identical)
|
| 258 |
+
span2 ----XXXX-- BEO (overlap)
|
| 259 |
+
span2 --XXXX---- BEO (overlap)
|
| 260 |
+
span2 ----XX---- BES (smaller)
|
| 261 |
+
span2 ---XX----- BES (smaller)
|
| 262 |
+
span2 --XXXXXX-- BEL (larger)
|
| 263 |
+
span2 --XXXXX--- BEL (larger)
|
| 264 |
+
span2 -X-------- False (no overlap)
|
| 265 |
+
|
| 266 |
+
Input:
|
| 267 |
+
Tuples (beginSpan1, endSpan1) and (beginSpan2, endSpan2),
|
| 268 |
+
where begin and end are the indices of the corresponding tokens.
|
| 269 |
+
|
| 270 |
+
Output:
|
| 271 |
+
Either one of the following strings
|
| 272 |
+
- "TP" = span1 and span2 are identical, i.e., actually no error here
|
| 273 |
+
- "BES" = span2 is shorter and contained within span1 (with at most one identical boundary)
|
| 274 |
+
- "BEL" = span2 is longer and contains span1 (with at most one identical boundary)
|
| 275 |
+
- "BEO" = span1 and span2 overlap with no identical boundary
|
| 276 |
+
or False if span1 and span2 do not overlap.
|
| 277 |
+
"""
|
| 278 |
+
#Identical spans
|
| 279 |
+
if span1[0] == span2[0] and span1[1] == span2[1]:
|
| 280 |
+
return "TP"
|
| 281 |
+
|
| 282 |
+
#Start of spans is identical
|
| 283 |
+
if span1[0] == span2[0]:
|
| 284 |
+
#End of 2 is within span1
|
| 285 |
+
if span2[1] >= span1[0] and span2[1] < span1[1]:
|
| 286 |
+
return "BES"
|
| 287 |
+
#End of 2 is behind span1
|
| 288 |
+
else:
|
| 289 |
+
return "BEL"
|
| 290 |
+
#Start of 2 is before span1
|
| 291 |
+
elif span2[0] < span1[0]:
|
| 292 |
+
#End is before span 1
|
| 293 |
+
if span2[1] < span1[0]:
|
| 294 |
+
return False
|
| 295 |
+
#End is within span1
|
| 296 |
+
elif span2[1] < span1[1]:
|
| 297 |
+
return "BEO"
|
| 298 |
+
#End is identical or to the right
|
| 299 |
+
else:
|
| 300 |
+
return "BEL"
|
| 301 |
+
#Start of 2 is within span1
|
| 302 |
+
elif span2[0] >= span1[0] and span2[0] <= span1[1]:
|
| 303 |
+
#End of 2 is wihtin span1
|
| 304 |
+
if span2[1] <= span1[1]:
|
| 305 |
+
return "BES"
|
| 306 |
+
#End of 2 is to the right
|
| 307 |
+
else:
|
| 308 |
+
return "BEO"
|
| 309 |
+
#Start of 2 is behind span1
|
| 310 |
+
else:
|
| 311 |
+
return False
|
| 312 |
+
|
| 313 |
+
#####################################
|
| 314 |
+
|
| 315 |
+
def compare_spans(target_spans, system_spans, focus="target"):
|
| 316 |
+
"""
|
| 317 |
+
Compare system and target spans to identify correct/incorrect annotations.
|
| 318 |
+
|
| 319 |
+
The function takes a list of target spans and system spans.
|
| 320 |
+
Each span is a 4-tuple of
|
| 321 |
+
- label: the span type as string
|
| 322 |
+
- begin: the index of first token; equals end for spans of length 1
|
| 323 |
+
- end: the index of the last token; equals begin for spans of length 1
|
| 324 |
+
- tokens: a set of token indices included in the span
|
| 325 |
+
(this allows the correct evaluation of
|
| 326 |
+
partially and multiply overlapping spans;
|
| 327 |
+
to allow for changes of the token set,
|
| 328 |
+
the span tuple is actually implemented as a list.)
|
| 329 |
+
|
| 330 |
+
The function first performs traditional evaluation on these spans
|
| 331 |
+
to identify true positives, false positives, and false negatives.
|
| 332 |
+
Then, the additional error types for fair evaluation are determined,
|
| 333 |
+
following steps 1 to 4:
|
| 334 |
+
1. Count 1:1 mappings (TP, LE)
|
| 335 |
+
2. Count boundary errors (BE = BES + BEL + BEO)
|
| 336 |
+
3. Count labeling-boundary errors (LBE)
|
| 337 |
+
4. Count 1:0 and 0:1 mappings (FN, FP)
|
| 338 |
+
|
| 339 |
+
Input:
|
| 340 |
+
- List of target spans
|
| 341 |
+
- List of system spans
|
| 342 |
+
- Wether to focus on the system or target annotation (default: target)
|
| 343 |
+
|
| 344 |
+
Output: A dictionary containing
|
| 345 |
+
- the counts of TP, FP, and FN according to traditional evaluation
|
| 346 |
+
(per label and overall)
|
| 347 |
+
- the counts of TP, FP, LE, BE, BES, BEL, BEO, and FN
|
| 348 |
+
(per label and overall; BE = BES + BEL + BEO)
|
| 349 |
+
- a confusion matrix {target_label1 : {system_label1 : count,
|
| 350 |
+
system_label2 : count,
|
| 351 |
+
...},
|
| 352 |
+
target_label2 : ...
|
| 353 |
+
}
|
| 354 |
+
with an underscore '_' representing an empty label (FN/FP)
|
| 355 |
+
"""
|
| 356 |
+
|
| 357 |
+
##################################
|
| 358 |
+
|
| 359 |
+
def _max_sim(t, S):
|
| 360 |
+
"""
|
| 361 |
+
Determine the most similar span s from S for span t.
|
| 362 |
+
|
| 363 |
+
Similarity is defined as
|
| 364 |
+
1. the maximum number of shared tokens between s and t and
|
| 365 |
+
2. the minimum number of tokens only in t
|
| 366 |
+
If multiple spans are equally similar, the shortest s is chosen.
|
| 367 |
+
If still multiple spans are equally similar, the first one in the list is chosen,
|
| 368 |
+
which corresponds to the left-most one if sentences are read from left to right.
|
| 369 |
+
|
| 370 |
+
Input:
|
| 371 |
+
- Span t as 4-tuple [label, begin, end, token_set]
|
| 372 |
+
- List S containing > 1 spans
|
| 373 |
+
|
| 374 |
+
Output: The most similar s for t.
|
| 375 |
+
"""
|
| 376 |
+
S.sort(key=lambda s: (0-len(t[3].intersection(s[3])),
|
| 377 |
+
len(t[3].difference(s[3])),
|
| 378 |
+
len(s[3].difference(t[3])),
|
| 379 |
+
s[2]-s[1]))
|
| 380 |
+
return S[0]
|
| 381 |
+
|
| 382 |
+
##################################
|
| 383 |
+
|
| 384 |
+
traditional_error_types = ["TP", "FP", "FN"]
|
| 385 |
+
additional_error_types = ["LE", "BE", "BEO", "BES", "BEL", "LBE"]
|
| 386 |
+
|
| 387 |
+
#Initialize empty eval dict
|
| 388 |
+
eval_dict = {"overall" : {"traditional" : {err_type : 0 for err_type
|
| 389 |
+
in traditional_error_types},
|
| 390 |
+
"fair" : {err_type : 0 for err_type
|
| 391 |
+
in traditional_error_types + additional_error_types}},
|
| 392 |
+
"per_label" : {"traditional" : {},
|
| 393 |
+
"fair" : {}},
|
| 394 |
+
"conf" : {}}
|
| 395 |
+
|
| 396 |
+
#Initialize per-label dict
|
| 397 |
+
for s in target_spans + system_spans:
|
| 398 |
+
if not s[0] in eval_dict["per_label"]["traditional"]:
|
| 399 |
+
eval_dict["per_label"]["traditional"][s[0]] = {err_type : 0 for err_type
|
| 400 |
+
in traditional_error_types}
|
| 401 |
+
eval_dict["per_label"]["fair"][s[0]] = {err_type : 0 for err_type
|
| 402 |
+
in traditional_error_types + additional_error_types}
|
| 403 |
+
#Initialize confusion matrix
|
| 404 |
+
if not s[0] in eval_dict["conf"]:
|
| 405 |
+
eval_dict["conf"][s[0]] = {}
|
| 406 |
+
eval_dict["conf"]["_"] = {}
|
| 407 |
+
for lab in list(eval_dict["conf"])+["_"]:
|
| 408 |
+
for lab2 in list(eval_dict["conf"])+["_"]:
|
| 409 |
+
eval_dict["conf"][lab][lab2] = 0
|
| 410 |
+
|
| 411 |
+
################################################
|
| 412 |
+
### Traditional evaluation (overall + per label)
|
| 413 |
+
|
| 414 |
+
for t in target_spans:
|
| 415 |
+
#Spans in target and system annotation are true positives
|
| 416 |
+
if t in system_spans:
|
| 417 |
+
eval_dict["overall"]["traditional"]["TP"] += 1
|
| 418 |
+
eval_dict["per_label"]["traditional"][t[0]]["TP"] += 1
|
| 419 |
+
#Spans only in target annotation are false negatives
|
| 420 |
+
else:
|
| 421 |
+
eval_dict["overall"]["traditional"]["FN"] += 1
|
| 422 |
+
eval_dict["per_label"]["traditional"][t[0]]["FN"] += 1
|
| 423 |
+
for s in system_spans:
|
| 424 |
+
#Spans only in system annotation are false positives
|
| 425 |
+
if not s in target_spans:
|
| 426 |
+
eval_dict["overall"]["traditional"]["FP"] += 1
|
| 427 |
+
eval_dict["per_label"]["traditional"][s[0]]["FP"] += 1
|
| 428 |
+
|
| 429 |
+
###########################################################
|
| 430 |
+
### Fair evaluation (overall, per label + confusion matrix)
|
| 431 |
+
|
| 432 |
+
### Identical spans (TP and LE)
|
| 433 |
+
|
| 434 |
+
### TP
|
| 435 |
+
#Identify true positives (identical spans between target and system)
|
| 436 |
+
tps = [t for t in target_spans if t in system_spans]
|
| 437 |
+
for t in tps:
|
| 438 |
+
s = [s for s in system_spans if s == t]
|
| 439 |
+
if s:
|
| 440 |
+
s = s[0]
|
| 441 |
+
eval_dict["overall"]["fair"]["TP"] += 1
|
| 442 |
+
eval_dict["per_label"]["fair"][t[0]]["TP"] += 1
|
| 443 |
+
#After counting, remove from input lists
|
| 444 |
+
system_spans.remove(s)
|
| 445 |
+
target_spans.remove(t)
|
| 446 |
+
|
| 447 |
+
### LE
|
| 448 |
+
#Identify labeling error: identical span but different label
|
| 449 |
+
les = [t for t in target_spans
|
| 450 |
+
if any(t[0] != s[0] and t[1:3] == s[1:3] for s in system_spans)]
|
| 451 |
+
for t in les:
|
| 452 |
+
s = [s for s in system_spans if t[0] != s[0] and t[1:3] == s[1:3]]
|
| 453 |
+
if s:
|
| 454 |
+
s = s[0]
|
| 455 |
+
#Overall: count as one LE
|
| 456 |
+
eval_dict["overall"]["fair"]["LE"] += 1
|
| 457 |
+
#Per label: depending on focus count for target label or system label
|
| 458 |
+
if focus == "target":
|
| 459 |
+
eval_dict["per_label"]["fair"][t[0]]["LE"] += 1
|
| 460 |
+
elif focus == "system":
|
| 461 |
+
eval_dict["per_label"]["fair"][s[0]]["LE"] += 1
|
| 462 |
+
#Add to confusion matrix
|
| 463 |
+
eval_dict["conf"][t[0]][s[0]] += 1
|
| 464 |
+
#After counting, remove from input lists
|
| 465 |
+
system_spans.remove(s)
|
| 466 |
+
target_spans.remove(t)
|
| 467 |
+
|
| 468 |
+
### Boundary errors
|
| 469 |
+
|
| 470 |
+
#Create lists to collect matched spans
|
| 471 |
+
counted_target = list()
|
| 472 |
+
counted_system = list()
|
| 473 |
+
|
| 474 |
+
#Sort lists by span length (shortest to longest)
|
| 475 |
+
target_spans.sort(key=lambda t : t[2] - t[1])
|
| 476 |
+
system_spans.sort(key=lambda s : s[2] - s[1])
|
| 477 |
+
|
| 478 |
+
### BE
|
| 479 |
+
|
| 480 |
+
## 1. Compare input lists
|
| 481 |
+
#Identify boundary errors: identical label but different, overlapping span
|
| 482 |
+
i = 0
|
| 483 |
+
while i < len(target_spans):
|
| 484 |
+
t = target_spans[i]
|
| 485 |
+
|
| 486 |
+
#Find possible boundary errors
|
| 487 |
+
be = [s for s in system_spans
|
| 488 |
+
if t[0] == s[0] and t[1:3] != s[1:3]
|
| 489 |
+
and overlap_type((t[1], t[2]), (s[1], s[2])) in ("BES", "BEL", "BEO")]
|
| 490 |
+
if not be:
|
| 491 |
+
i += 1
|
| 492 |
+
continue
|
| 493 |
+
|
| 494 |
+
#If there is more than one possible BE, take most similar one
|
| 495 |
+
if len(be) > 1:
|
| 496 |
+
s = _max_sim(t, be)
|
| 497 |
+
else:
|
| 498 |
+
s = be[0]
|
| 499 |
+
|
| 500 |
+
#Determine overlap type
|
| 501 |
+
be_type = overlap_type((t[1], t[2]), (s[1], s[2]))
|
| 502 |
+
|
| 503 |
+
#Overall: Count as BE and more fine-grained BE type
|
| 504 |
+
eval_dict["overall"]["fair"]["BE"] += 1
|
| 505 |
+
eval_dict["overall"]["fair"][be_type] += 1
|
| 506 |
+
|
| 507 |
+
#Per-label: count as general BE and specific BE type
|
| 508 |
+
eval_dict["per_label"]["fair"][t[0]]["BE"] += 1
|
| 509 |
+
eval_dict["per_label"]["fair"][t[0]][be_type] += 1
|
| 510 |
+
|
| 511 |
+
#Add to confusion matrix
|
| 512 |
+
eval_dict["conf"][t[0]][s[0]] += 1
|
| 513 |
+
|
| 514 |
+
#Remove matched spans from input list
|
| 515 |
+
system_spans.remove(s)
|
| 516 |
+
target_spans.remove(t)
|
| 517 |
+
|
| 518 |
+
#Remove matched tokens from spans
|
| 519 |
+
matching_tokens = t[3].intersection(s[3])
|
| 520 |
+
s[3] = s[3].difference(matching_tokens)
|
| 521 |
+
t[3] = t[3].difference(matching_tokens)
|
| 522 |
+
|
| 523 |
+
#Move matched spans to counted list
|
| 524 |
+
counted_system.append(s)
|
| 525 |
+
counted_target.append(t)
|
| 526 |
+
|
| 527 |
+
## 2. Compare input target list with matched system list
|
| 528 |
+
i = 0
|
| 529 |
+
while i < len(target_spans):
|
| 530 |
+
t = target_spans[i]
|
| 531 |
+
|
| 532 |
+
#Find possible boundary errors in already matched spans
|
| 533 |
+
#that still share unmatched tokens
|
| 534 |
+
be = [s for s in counted_system
|
| 535 |
+
if t[0] == s[0] and t[1:3] != s[1:3]
|
| 536 |
+
and overlap_type((t[1], t[2]), (s[1], s[2])) in ("BES", "BEL", "BEO")
|
| 537 |
+
and t[3].intersection(s[3])]
|
| 538 |
+
if not be:
|
| 539 |
+
i += 1
|
| 540 |
+
continue
|
| 541 |
+
|
| 542 |
+
#If there is more than one possible BE, take most similar one
|
| 543 |
+
if len(be) > 1:
|
| 544 |
+
s = _max_sim(t, be)
|
| 545 |
+
else:
|
| 546 |
+
s = be[0]
|
| 547 |
+
|
| 548 |
+
#Determine overlap type
|
| 549 |
+
be_type = overlap_type((t[1], t[2]), (s[1], s[2]))
|
| 550 |
+
|
| 551 |
+
#Overall: Count as BE and more fine-grained BE type
|
| 552 |
+
eval_dict["overall"]["fair"]["BE"] += 1
|
| 553 |
+
eval_dict["overall"]["fair"][be_type] += 1
|
| 554 |
+
|
| 555 |
+
#Per-label: count as general BE and specific BE type
|
| 556 |
+
eval_dict["per_label"]["fair"][t[0]]["BE"] += 1
|
| 557 |
+
eval_dict["per_label"]["fair"][t[0]][be_type] += 1
|
| 558 |
+
|
| 559 |
+
#Add to confusion matrix
|
| 560 |
+
eval_dict["conf"][t[0]][s[0]] += 1
|
| 561 |
+
|
| 562 |
+
#Remove matched span from input list
|
| 563 |
+
target_spans.remove(t)
|
| 564 |
+
|
| 565 |
+
#Remove matched tokens from spans
|
| 566 |
+
matching_tokens = t[3].intersection(s[3])
|
| 567 |
+
counted_system[counted_system.index(s)][3] = s[3].difference(matching_tokens)
|
| 568 |
+
t[3] = t[3].difference(matching_tokens)
|
| 569 |
+
|
| 570 |
+
#Move target span to counted list
|
| 571 |
+
counted_target.append(t)
|
| 572 |
+
|
| 573 |
+
## 3. Compare input system list with matched target list
|
| 574 |
+
i = 0
|
| 575 |
+
while i < len(system_spans):
|
| 576 |
+
s = system_spans[i]
|
| 577 |
+
|
| 578 |
+
#Find possible boundary errors in already matched target spans
|
| 579 |
+
be = [t for t in counted_target
|
| 580 |
+
if t[0] == s[0] and t[1:3] != s[1:3]
|
| 581 |
+
and overlap_type((t[1], t[2]), (s[1], s[2])) in ("BES", "BEL", "BEO")
|
| 582 |
+
and t[3].intersection(s[3])]
|
| 583 |
+
if not be:
|
| 584 |
+
i += 1
|
| 585 |
+
continue
|
| 586 |
+
|
| 587 |
+
#If there is more than one possible BE, take most similar one
|
| 588 |
+
if len(be) > 1:
|
| 589 |
+
t = _max_sim(s, be)
|
| 590 |
+
else:
|
| 591 |
+
t = be[0]
|
| 592 |
+
|
| 593 |
+
#Determine overlap type
|
| 594 |
+
be_type = overlap_type((t[1], t[2]), (s[1], s[2]))
|
| 595 |
+
|
| 596 |
+
#Overall: Count as BE and more fine-grained BE type
|
| 597 |
+
eval_dict["overall"]["fair"]["BE"] += 1
|
| 598 |
+
eval_dict["overall"]["fair"][be_type] += 1
|
| 599 |
+
|
| 600 |
+
#Per-label: count as general BE and specific BE type
|
| 601 |
+
eval_dict["per_label"]["fair"][t[0]]["BE"] += 1
|
| 602 |
+
eval_dict["per_label"]["fair"][t[0]][be_type] += 1
|
| 603 |
+
|
| 604 |
+
#Add to confusion matrix
|
| 605 |
+
eval_dict["conf"][t[0]][s[0]] += 1
|
| 606 |
+
|
| 607 |
+
#Remove matched span from input list
|
| 608 |
+
system_spans.remove(s)
|
| 609 |
+
|
| 610 |
+
#Remove matched tokens from spans
|
| 611 |
+
matching_tokens = t[3].intersection(s[3])
|
| 612 |
+
counted_target[counted_target.index(t)][3] = t[3].difference(matching_tokens)
|
| 613 |
+
s[3] = s[3].difference(matching_tokens)
|
| 614 |
+
|
| 615 |
+
#Move system span to counted list
|
| 616 |
+
counted_system.append(s)
|
| 617 |
+
|
| 618 |
+
### LBE
|
| 619 |
+
|
| 620 |
+
## 1. Compare input lists
|
| 621 |
+
#Identify labeling-boundary errors: different label but overlapping span
|
| 622 |
+
i = 0
|
| 623 |
+
while i < len(target_spans):
|
| 624 |
+
t = target_spans[i]
|
| 625 |
+
|
| 626 |
+
#Find possible boundary errors
|
| 627 |
+
lbe = [s for s in system_spans
|
| 628 |
+
if t[0] != s[0] and t[1:3] != s[1:3]
|
| 629 |
+
and overlap_type((t[1], t[2]), (s[1], s[2])) in ("BES", "BEL", "BEO")]
|
| 630 |
+
if not lbe:
|
| 631 |
+
i += 1
|
| 632 |
+
continue
|
| 633 |
+
|
| 634 |
+
#If there is more than one possible LBE, take most similar one
|
| 635 |
+
if len(lbe) > 1:
|
| 636 |
+
s = _max_sim(t, lbe)
|
| 637 |
+
else:
|
| 638 |
+
s = lbe[0]
|
| 639 |
+
|
| 640 |
+
#Overall: count as LBE
|
| 641 |
+
eval_dict["overall"]["fair"]["LBE"] += 1
|
| 642 |
+
|
| 643 |
+
#Per label: depending on focus count as LBE for target or system label
|
| 644 |
+
if focus == "target":
|
| 645 |
+
eval_dict["per_label"]["fair"][t[0]]["LBE"] += 1
|
| 646 |
+
elif focus == "system":
|
| 647 |
+
eval_dict["per_label"]["fair"][s[0]]["LBE"] += 1
|
| 648 |
+
|
| 649 |
+
#Add to confusion matrix
|
| 650 |
+
eval_dict["conf"][t[0]][s[0]] += 1
|
| 651 |
+
|
| 652 |
+
#Remove matched spans from input list
|
| 653 |
+
system_spans.remove(s)
|
| 654 |
+
target_spans.remove(t)
|
| 655 |
+
|
| 656 |
+
#Remove matched tokens from spans
|
| 657 |
+
matching_tokens = t[3].intersection(s[3])
|
| 658 |
+
s[3] = s[3].difference(matching_tokens)
|
| 659 |
+
t[3] = t[3].difference(matching_tokens)
|
| 660 |
+
|
| 661 |
+
#Move spans to counted lists
|
| 662 |
+
counted_system.append(s)
|
| 663 |
+
counted_target.append(t)
|
| 664 |
+
|
| 665 |
+
## 2. Compare input target list with matched system list
|
| 666 |
+
i = 0
|
| 667 |
+
while i < len(target_spans):
|
| 668 |
+
t = target_spans[i]
|
| 669 |
+
|
| 670 |
+
#Find possible labeling-boundary errors in already matched system spans
|
| 671 |
+
lbe = [s for s in counted_system
|
| 672 |
+
if t[0] != s[0] and t[1:3] != s[1:3]
|
| 673 |
+
and overlap_type((t[1], t[2]), (s[1], s[2])) in ("BES", "BEL", "BEO")
|
| 674 |
+
and t[3].intersection(s[3])]
|
| 675 |
+
if not lbe:
|
| 676 |
+
i += 1
|
| 677 |
+
continue
|
| 678 |
+
|
| 679 |
+
#If there is more than one possible LBE, take most similar one
|
| 680 |
+
if len(lbe) > 1:
|
| 681 |
+
s = _max_sim(t, lbe)
|
| 682 |
+
else:
|
| 683 |
+
s = lbe[0]
|
| 684 |
+
|
| 685 |
+
#Overall: count as LBE
|
| 686 |
+
eval_dict["overall"]["fair"]["LBE"] += 1
|
| 687 |
+
|
| 688 |
+
#Per label: depending on focus count as LBE for target or system label
|
| 689 |
+
if focus == "target":
|
| 690 |
+
eval_dict["per_label"]["fair"][t[0]]["LBE"] += 1
|
| 691 |
+
elif focus == "system":
|
| 692 |
+
eval_dict["per_label"]["fair"][s[0]]["LBE"] += 1
|
| 693 |
+
|
| 694 |
+
#Add to confusion matrix
|
| 695 |
+
eval_dict["conf"][t[0]][s[0]] += 1
|
| 696 |
+
|
| 697 |
+
#Remove matched span from input list
|
| 698 |
+
target_spans.remove(t)
|
| 699 |
+
|
| 700 |
+
#Remove matched tokens from spans
|
| 701 |
+
matching_tokens = t[3].intersection(s[3])
|
| 702 |
+
counted_system[counted_system.index(s)][3] = s[3].difference(matching_tokens)
|
| 703 |
+
t[3] = t[3].difference(matching_tokens)
|
| 704 |
+
|
| 705 |
+
#Move target span to counted list
|
| 706 |
+
counted_target.append(t)
|
| 707 |
+
|
| 708 |
+
## 3. Compare input system list with matched target list
|
| 709 |
+
i = 0
|
| 710 |
+
while i < len(system_spans):
|
| 711 |
+
s = system_spans[i]
|
| 712 |
+
|
| 713 |
+
#Find possible labeling-boundary errors in already matched target spans
|
| 714 |
+
lbe = [t for t in counted_target
|
| 715 |
+
if t[0] != s[0] and t[1:3] != s[1:3]
|
| 716 |
+
and overlap_type((t[1], t[2]), (s[1], s[2])) in ("BES", "BEL", "BEO")
|
| 717 |
+
and t[3].intersection(s[3])]
|
| 718 |
+
if not lbe:
|
| 719 |
+
i += 1
|
| 720 |
+
continue
|
| 721 |
+
|
| 722 |
+
#If there is more than one possible LBE, take most similar one
|
| 723 |
+
if len(lbe) > 1:
|
| 724 |
+
t = _max_sim(s, lbe)
|
| 725 |
+
else:
|
| 726 |
+
t = lbe[0]
|
| 727 |
+
|
| 728 |
+
#Overall: count as LBE
|
| 729 |
+
eval_dict["overall"]["fair"]["LBE"] += 1
|
| 730 |
+
|
| 731 |
+
#Per label: depending on focus count as LBE for target or system label
|
| 732 |
+
if focus == "target":
|
| 733 |
+
eval_dict["per_label"]["fair"][t[0]]["LBE"] += 1
|
| 734 |
+
elif focus == "system":
|
| 735 |
+
eval_dict["per_label"]["fair"][s[0]]["LBE"] += 1
|
| 736 |
+
|
| 737 |
+
#Add to confusion matrix
|
| 738 |
+
eval_dict["conf"][t[0]][s[0]] += 1
|
| 739 |
+
|
| 740 |
+
#Remove matched span from input list
|
| 741 |
+
system_spans.remove(s)
|
| 742 |
+
|
| 743 |
+
#Remove matched tokens from spans
|
| 744 |
+
matching_tokens = t[3].intersection(s[3])
|
| 745 |
+
counted_target[counted_target.index(t)][3] = t[3].difference(matching_tokens)
|
| 746 |
+
s[3] = s[3].difference(matching_tokens)
|
| 747 |
+
|
| 748 |
+
#Move matched system span to counted list
|
| 749 |
+
counted_system.append(s)
|
| 750 |
+
|
| 751 |
+
### 1:0 and 0:1 mappings
|
| 752 |
+
|
| 753 |
+
#FN: identify false negatives
|
| 754 |
+
for t in target_spans:
|
| 755 |
+
eval_dict["overall"]["fair"]["FN"] += 1
|
| 756 |
+
eval_dict["per_label"]["fair"][t[0]]["FN"] += 1
|
| 757 |
+
eval_dict["conf"][t[0]]["_"] += 1
|
| 758 |
+
|
| 759 |
+
#FP: identify false positives
|
| 760 |
+
for s in system_spans:
|
| 761 |
+
eval_dict["overall"]["fair"]["FP"] += 1
|
| 762 |
+
eval_dict["per_label"]["fair"][s[0]]["FP"] += 1
|
| 763 |
+
eval_dict["conf"]["_"][s[0]] += 1
|
| 764 |
+
|
| 765 |
+
return eval_dict
|
| 766 |
+
|
| 767 |
+
############################
|
| 768 |
+
|
| 769 |
+
def annotation_stats(target_spans, **config):
|
| 770 |
+
"""
|
| 771 |
+
Count the target annotations to display simple statistics.
|
| 772 |
+
|
| 773 |
+
The function takes a list of target spans
|
| 774 |
+
with each span being a 4-tuple [label, begin, end, token_set]
|
| 775 |
+
and adds the included labels to the general data stats dictionary.
|
| 776 |
+
|
| 777 |
+
Input:
|
| 778 |
+
- List of target spans
|
| 779 |
+
- Config dictionary
|
| 780 |
+
|
| 781 |
+
Output: The config dictionary is modified in-place.
|
| 782 |
+
"""
|
| 783 |
+
stats_dict = config.get("data_stats", {})
|
| 784 |
+
for span in target_spans:
|
| 785 |
+
if span[0] in stats_dict:
|
| 786 |
+
stats_dict[span[0]] += 1
|
| 787 |
+
else:
|
| 788 |
+
stats_dict[span[0]] = 1
|
| 789 |
+
config["data_stats"] = stats_dict
|
| 790 |
+
|
| 791 |
+
############################
|
| 792 |
+
|
| 793 |
+
def get_spans(sentence, **config):
|
| 794 |
+
"""
|
| 795 |
+
Return spans from CoNLL2000 or span files.
|
| 796 |
+
|
| 797 |
+
The function determines the data format of the input sentence
|
| 798 |
+
and extracts the spans from it accordingly.
|
| 799 |
+
|
| 800 |
+
If desired, punctuation can be ignored (config['ignore_punct'] == True)
|
| 801 |
+
for files in the CoNLL2000 format that include POS information.
|
| 802 |
+
The following list of tags is considered as punctuation:
|
| 803 |
+
['$.', '$,', '$(', #STTS
|
| 804 |
+
'PUNCT', #UPOS
|
| 805 |
+
'PUNKT', 'KOMMA', 'COMMA', 'KLAMMER', #custom
|
| 806 |
+
'.', ',', ':', '(', ')', '"', '‘', '“', '’', '”' #PTB
|
| 807 |
+
]
|
| 808 |
+
|
| 809 |
+
Labels that should be ignored (included in config['exclude']
|
| 810 |
+
or not included in config['labels'] if config['labels'] != 'all')
|
| 811 |
+
are also removed from the resulting list.
|
| 812 |
+
|
| 813 |
+
Input:
|
| 814 |
+
- List of lines for a given sentence
|
| 815 |
+
- Config dictionary
|
| 816 |
+
|
| 817 |
+
Output: List of spans that are included in the sentence.
|
| 818 |
+
"""
|
| 819 |
+
|
| 820 |
+
################
|
| 821 |
+
|
| 822 |
+
def spans_from_conll(sentence):
|
| 823 |
+
"""
|
| 824 |
+
Read annotation spans from a CoNLL2000 file.
|
| 825 |
+
|
| 826 |
+
The function takes a list of lines (belonging to one sentence)
|
| 827 |
+
and extracts the annotated spans. The lines are expected to
|
| 828 |
+
contain three space-separated columns:
|
| 829 |
+
|
| 830 |
+
Form XPOS Annotation
|
| 831 |
+
|
| 832 |
+
Form: Word form
|
| 833 |
+
XPOS: POS tag of the word (ideally STTS, UPOS, or PTB)
|
| 834 |
+
Annotation: Span annotation in BIO format (see below);
|
| 835 |
+
multiple spans are separated with the pipe symbol '|'
|
| 836 |
+
|
| 837 |
+
BIO tags consist of the token's position in the span
|
| 838 |
+
(begin 'B', inside 'I', outside 'O'), a dash '-' and the span label,
|
| 839 |
+
e.g., B-NP, I-AC, or in the case of stacked annotations I-RELC|B-NP.
|
| 840 |
+
|
| 841 |
+
The function accepts 'O', '_' and '' as annotations outside of spans.
|
| 842 |
+
|
| 843 |
+
Input: List of lines belonging to one sentence.
|
| 844 |
+
Output: List of spans as 4-tuples [label, begin, end, token_set]
|
| 845 |
+
"""
|
| 846 |
+
spans = []
|
| 847 |
+
span_stack = []
|
| 848 |
+
|
| 849 |
+
#For each token
|
| 850 |
+
for t, tok in enumerate(sentence):
|
| 851 |
+
|
| 852 |
+
#Token is [Form, XPOS, Annotation]
|
| 853 |
+
tok = tok.split()
|
| 854 |
+
|
| 855 |
+
#Token is not annotated
|
| 856 |
+
if tok[-1] in ["O", "_", ""]:
|
| 857 |
+
#Add previous stack to span list
|
| 858 |
+
#(sorted from left to right)
|
| 859 |
+
while span_stack:
|
| 860 |
+
spans.append(span_stack.pop(0))
|
| 861 |
+
span_stack = []
|
| 862 |
+
continue
|
| 863 |
+
|
| 864 |
+
#Token is annotated
|
| 865 |
+
#Split stacked annotations at pipe
|
| 866 |
+
annotations = tok[-1].strip().split("|")
|
| 867 |
+
|
| 868 |
+
#While there are more annotation levels on
|
| 869 |
+
#the stack than at the current token,
|
| 870 |
+
#close annotations on the stack (i.e., move
|
| 871 |
+
#them to result list)
|
| 872 |
+
while len(span_stack) > len(annotations):
|
| 873 |
+
spans.append(span_stack.pop())
|
| 874 |
+
|
| 875 |
+
#For each annotation of the current token
|
| 876 |
+
for i, annotation in enumerate(annotations):
|
| 877 |
+
|
| 878 |
+
#New span
|
| 879 |
+
if annotation.startswith("B-"):
|
| 880 |
+
|
| 881 |
+
#If it's the first annotation level and there is
|
| 882 |
+
#something on the stack, move it to result list
|
| 883 |
+
if i == 0 and span_stack:
|
| 884 |
+
while span_stack:
|
| 885 |
+
spans.append(span_stack.pop(0))
|
| 886 |
+
#Otherwise, end same-level annotation on the
|
| 887 |
+
#stack (because a new span begins here) and
|
| 888 |
+
#move it to the result list
|
| 889 |
+
else:
|
| 890 |
+
while len(span_stack) > i:
|
| 891 |
+
spans.append(span_stack.pop())
|
| 892 |
+
|
| 893 |
+
#Last part of BIO tag is the label
|
| 894 |
+
label = annotation.split("-")[1]
|
| 895 |
+
|
| 896 |
+
#Create a new span with this token's
|
| 897 |
+
#index as start and end (incremendet by one).
|
| 898 |
+
s = [label, t+1, t+1, {t+1}]
|
| 899 |
+
|
| 900 |
+
#Add on top of stack
|
| 901 |
+
span_stack.append(s)
|
| 902 |
+
|
| 903 |
+
#Span continues
|
| 904 |
+
elif annotation.startswith("I-"):
|
| 905 |
+
#Increment the end index of the span
|
| 906 |
+
#at the level of this annotation on the stack
|
| 907 |
+
span_stack[i][2] = t+1
|
| 908 |
+
#Also, add the index to the token set
|
| 909 |
+
span_stack[i][-1].add(t+1)
|
| 910 |
+
|
| 911 |
+
#Add sentence final span(s)
|
| 912 |
+
while span_stack:
|
| 913 |
+
spans.append(span_stack.pop(0))
|
| 914 |
+
|
| 915 |
+
return spans
|
| 916 |
+
|
| 917 |
+
################
|
| 918 |
+
|
| 919 |
+
def spans_from_lines(sentence):
|
| 920 |
+
"""
|
| 921 |
+
Read annotation spans from a span file.
|
| 922 |
+
|
| 923 |
+
The function takes a list of lines (belonging to one sentence)
|
| 924 |
+
and extracts the annotated spans. The lines are expected to
|
| 925 |
+
contain four tab-separated columns:
|
| 926 |
+
|
| 927 |
+
Label Begin End Tokens
|
| 928 |
+
|
| 929 |
+
Label: Span label
|
| 930 |
+
Begin: Index of the first included token (must be convertible to int)
|
| 931 |
+
End: Index of the last included token (must be convertible to int
|
| 932 |
+
and equal or greater than begin)
|
| 933 |
+
Tokens: Comma-separated list of indices of the tokens in the span
|
| 934 |
+
(must be convertible to int with begin <= i <= end);
|
| 935 |
+
if no (valid) indices are given, the range begin:end is used
|
| 936 |
+
|
| 937 |
+
Input: List of lines belonging to one sentence.
|
| 938 |
+
Output: List of spans as 4-tuples [label, begin, end, token_set]
|
| 939 |
+
"""
|
| 940 |
+
spans = []
|
| 941 |
+
for line in sentence:
|
| 942 |
+
vals = line.split("\t")
|
| 943 |
+
label = vals[0]
|
| 944 |
+
if not label:
|
| 945 |
+
print("ERROR: Missing label in input.")
|
| 946 |
+
return []
|
| 947 |
+
try:
|
| 948 |
+
begin = int(vals[1])
|
| 949 |
+
if begin < 1: raise ValueError
|
| 950 |
+
except ValueError:
|
| 951 |
+
print("ERROR: Begin {0} is not a legal index.".format(vals[1]))
|
| 952 |
+
return []
|
| 953 |
+
try:
|
| 954 |
+
end = int(vals[2])
|
| 955 |
+
if end < 1: raise ValueError
|
| 956 |
+
if end < begin: begin, end = end, begin
|
| 957 |
+
except ValueError:
|
| 958 |
+
print("ERROR: End {0} is not a legal index.".format(vals[2]))
|
| 959 |
+
return []
|
| 960 |
+
try:
|
| 961 |
+
toks = [int(v.strip()) for v in vals[-1].split(",")
|
| 962 |
+
if int(v.strip()) >= begin and int(v.strip()) <= end]
|
| 963 |
+
toks = set(toks)
|
| 964 |
+
except ValueError:
|
| 965 |
+
toks = []
|
| 966 |
+
if not toks:
|
| 967 |
+
toks = [i for i in range(begin, end+1)]
|
| 968 |
+
spans.append([label, begin, end, toks])
|
| 969 |
+
return spans
|
| 970 |
+
|
| 971 |
+
################
|
| 972 |
+
|
| 973 |
+
#Determine data format
|
| 974 |
+
|
| 975 |
+
#Span files contain 4 tab-separated columns
|
| 976 |
+
if len(sentence[0].split("\t")) == 4:
|
| 977 |
+
format = "spans"
|
| 978 |
+
spans = spans_from_lines(sentence)
|
| 979 |
+
|
| 980 |
+
#CoNLL2000 files contain 3 space-separated columns
|
| 981 |
+
elif len(sentence[0].split(" ")) == 3:
|
| 982 |
+
format = "conll2000"
|
| 983 |
+
spans = spans_from_conll(sentence)
|
| 984 |
+
else:
|
| 985 |
+
print("ERROR: Unknown input format")
|
| 986 |
+
return []
|
| 987 |
+
|
| 988 |
+
#Exclude punctuation from CoNLL2000, if desired
|
| 989 |
+
if format == "conll2000" \
|
| 990 |
+
and config.get("ignore_punct") == True:
|
| 991 |
+
|
| 992 |
+
#For each punctuation tok
|
| 993 |
+
for i, line in enumerate(sentence):
|
| 994 |
+
if line.split(" ")[1] in ["$.", "$,", "$(", #STTS
|
| 995 |
+
"PUNCT", #UPOS
|
| 996 |
+
"PUNKT", "KOMMA", "COMMA", "KLAMMER", #custom
|
| 997 |
+
".", ",", ":", "(", ")", "\"", "‘", "“", "’", "”" #PTB
|
| 998 |
+
]:
|
| 999 |
+
|
| 1000 |
+
for s in range(len(spans)):
|
| 1001 |
+
#Remove punc tok from set
|
| 1002 |
+
spans[s][-1].discard(i+1)
|
| 1003 |
+
|
| 1004 |
+
#If span begins with punc, move begin
|
| 1005 |
+
if spans[s][1] == i+1:
|
| 1006 |
+
if spans[s][2] != None and spans[s][2] > i+1:
|
| 1007 |
+
spans[s][1] = i+2
|
| 1008 |
+
else:
|
| 1009 |
+
spans[s][1] = None
|
| 1010 |
+
|
| 1011 |
+
#If span ends with punc, move end
|
| 1012 |
+
if spans[s][2] == i+1:
|
| 1013 |
+
if spans[s][1] != None and spans[s][1] <= i:
|
| 1014 |
+
spans[s][2] = i
|
| 1015 |
+
else:
|
| 1016 |
+
spans[s][2] = None
|
| 1017 |
+
|
| 1018 |
+
#Remove empty spans
|
| 1019 |
+
spans = [s for s in spans if s[1] != None and s[2] != None and len(s[3]) > 0]
|
| 1020 |
+
|
| 1021 |
+
#Exclude unwanted labels
|
| 1022 |
+
spans = [s for s in spans
|
| 1023 |
+
if not s[0] in config.get("exclude", [])
|
| 1024 |
+
and ("all" in config.get("labels", [])
|
| 1025 |
+
or s[0] in config.get("labels", []))]
|
| 1026 |
+
|
| 1027 |
+
return spans
|
| 1028 |
+
|
| 1029 |
+
############################
|
| 1030 |
+
|
| 1031 |
+
def get_sentences(filename):
|
| 1032 |
+
"""
|
| 1033 |
+
Reads sentences from input files.
|
| 1034 |
+
|
| 1035 |
+
The function iterates through the input file and
|
| 1036 |
+
yields a list of lines that belong to one sentence.
|
| 1037 |
+
Sentences are expected to be separated by an empty line.
|
| 1038 |
+
|
| 1039 |
+
Input: Filename of the input file.
|
| 1040 |
+
Output: Yields a list of lines for each sentence.
|
| 1041 |
+
"""
|
| 1042 |
+
file = open(filename, mode="r", encoding="utf-8")
|
| 1043 |
+
sent = []
|
| 1044 |
+
|
| 1045 |
+
for line in file:
|
| 1046 |
+
#New line: yield collected lines
|
| 1047 |
+
if sent and not line.strip():
|
| 1048 |
+
yield sent
|
| 1049 |
+
sent = []
|
| 1050 |
+
#New line but nothing to yield
|
| 1051 |
+
elif not line.strip():
|
| 1052 |
+
continue
|
| 1053 |
+
#Collect line of current sentence
|
| 1054 |
+
else:
|
| 1055 |
+
sent.append(line.strip())
|
| 1056 |
+
|
| 1057 |
+
#Last sentence if file doesn't end with empty line
|
| 1058 |
+
if sent:
|
| 1059 |
+
yield sent
|
| 1060 |
+
|
| 1061 |
+
file.close()
|
| 1062 |
+
|
| 1063 |
+
#############################
|
| 1064 |
+
|
| 1065 |
+
def add_dict(base_dict, dict_to_add):
|
| 1066 |
+
"""
|
| 1067 |
+
Take a base dictionary and add the values
|
| 1068 |
+
from another dictionary to it.
|
| 1069 |
+
|
| 1070 |
+
Contrary to standard dict update methods,
|
| 1071 |
+
this function does not overwrite values in the
|
| 1072 |
+
base dictionary. Instead, it is meant to add
|
| 1073 |
+
the values of the second dictionary to the values
|
| 1074 |
+
in the base dictionary. The dictionary is modified in-place.
|
| 1075 |
+
|
| 1076 |
+
For example:
|
| 1077 |
+
|
| 1078 |
+
>> base = {"A" : 1, "B" : {"c" : 2, "d" : 3}, "C" : [1, 2, 3]}
|
| 1079 |
+
>> add = {"A" : 1, "B" : {"c" : 1, "e" : 1}, "C" : [4], "D" : 2}
|
| 1080 |
+
>> add_dict(base, add)
|
| 1081 |
+
|
| 1082 |
+
will create a base dictionary:
|
| 1083 |
+
|
| 1084 |
+
>> base
|
| 1085 |
+
{'A': 2, 'B': {'c': 3, 'd': 3, 'e': 1}, 'C': [1, 2, 3, 4], 'D': 2}
|
| 1086 |
+
|
| 1087 |
+
The function can handle different types of nested structures.
|
| 1088 |
+
- Integers and float values are summed up.
|
| 1089 |
+
- Lists are appended
|
| 1090 |
+
- Sets are added (set union)
|
| 1091 |
+
- Dictionaries are added recursively
|
| 1092 |
+
For other value types, the base dictionary is left unchanged.
|
| 1093 |
+
|
| 1094 |
+
Input: Base dictionary and dictionary to be added.
|
| 1095 |
+
Output: Base dictionary.
|
| 1096 |
+
"""
|
| 1097 |
+
|
| 1098 |
+
#For each key in second dict
|
| 1099 |
+
for key, val in dict_to_add.items():
|
| 1100 |
+
|
| 1101 |
+
#It is already in the base dict
|
| 1102 |
+
if key in base_dict:
|
| 1103 |
+
|
| 1104 |
+
#It has an integer or float value
|
| 1105 |
+
if isinstance(val, (int, float)) \
|
| 1106 |
+
and isinstance(base_dict[key], (int, float)):
|
| 1107 |
+
|
| 1108 |
+
#Increment value in base dict
|
| 1109 |
+
base_dict[key] += val
|
| 1110 |
+
|
| 1111 |
+
#It has an iterable as value
|
| 1112 |
+
elif isinstance(val, Iterable) \
|
| 1113 |
+
and isinstance(base_dict[key], Iterable):
|
| 1114 |
+
|
| 1115 |
+
#List
|
| 1116 |
+
if isinstance(val, list) \
|
| 1117 |
+
and isinstance(base_dict[key], list):
|
| 1118 |
+
#Append
|
| 1119 |
+
base_dict[key].extend(val)
|
| 1120 |
+
|
| 1121 |
+
#Set
|
| 1122 |
+
elif isinstance(val, set) \
|
| 1123 |
+
and isinstance(base_dict[key], set):
|
| 1124 |
+
#Set union
|
| 1125 |
+
base_dict[key].update(val)
|
| 1126 |
+
|
| 1127 |
+
#Dict
|
| 1128 |
+
elif isinstance(val, dict) \
|
| 1129 |
+
and isinstance(base_dict[key], dict):
|
| 1130 |
+
#Recursively repeat
|
| 1131 |
+
add_dict(base_dict[key], val)
|
| 1132 |
+
|
| 1133 |
+
#Something else
|
| 1134 |
+
else:
|
| 1135 |
+
#Do nothing
|
| 1136 |
+
pass
|
| 1137 |
+
|
| 1138 |
+
#It has something else as value
|
| 1139 |
+
else:
|
| 1140 |
+
#Do nothing
|
| 1141 |
+
pass
|
| 1142 |
+
|
| 1143 |
+
#It is not in the base dict
|
| 1144 |
+
else:
|
| 1145 |
+
#Insert values from second dict into base
|
| 1146 |
+
base_dict[key] = deepcopy(val)
|
| 1147 |
+
|
| 1148 |
+
return base_dict
|
| 1149 |
+
|
| 1150 |
+
#############################
|
| 1151 |
+
|
| 1152 |
+
def calculate_results(eval_dict, **config):
|
| 1153 |
+
"""
|
| 1154 |
+
Calculate overall precision, recall, and F-scores.
|
| 1155 |
+
|
| 1156 |
+
The function takes an evaluation dictionary with error counts
|
| 1157 |
+
and applies the precision, recall and fscore functions.
|
| 1158 |
+
|
| 1159 |
+
It will calculate the traditional metrics
|
| 1160 |
+
and fair and/or weighted metrics, depending on the
|
| 1161 |
+
value of config['eval_method'].
|
| 1162 |
+
|
| 1163 |
+
The results are stored in the eval dict as 'Prec', 'Rec' and 'F1'
|
| 1164 |
+
for overall and per-label counts.
|
| 1165 |
+
|
| 1166 |
+
Input: Evaluation dict and config dict.
|
| 1167 |
+
Output: Evaluation dict with added precision, recall and F1 values.
|
| 1168 |
+
"""
|
| 1169 |
+
|
| 1170 |
+
#If weighted evaluation should be performed
|
| 1171 |
+
#copy error counts from fair evaluation
|
| 1172 |
+
if "weighted" in config.get("eval_method", []):
|
| 1173 |
+
eval_dict["overall"]["weighted"] = {}
|
| 1174 |
+
for err_type in eval_dict["overall"]["fair"]:
|
| 1175 |
+
eval_dict["overall"]["weighted"][err_type] = eval_dict["overall"]["fair"][err_type]
|
| 1176 |
+
for label in eval_dict["per_label"]["fair"]:
|
| 1177 |
+
eval_dict["per_label"]["weighted"][label] = {}
|
| 1178 |
+
for err_type in eval_dict["per_label"]["fair"][label]:
|
| 1179 |
+
eval_dict["per_label"]["weighted"][label][err_type] = eval_dict["per_label"]["fair"][label][err_type]
|
| 1180 |
+
|
| 1181 |
+
#For each evaluation method
|
| 1182 |
+
for version in config.get("eval_method", ["traditional", "fair"]):
|
| 1183 |
+
|
| 1184 |
+
#Overall results
|
| 1185 |
+
eval_dict["overall"][version]["Prec"] = precision(eval_dict["overall"][version],
|
| 1186 |
+
version,
|
| 1187 |
+
config.get("weights", {}))
|
| 1188 |
+
eval_dict["overall"][version]["Rec"] = recall(eval_dict["overall"][version],
|
| 1189 |
+
version,
|
| 1190 |
+
config.get("weights", {}))
|
| 1191 |
+
eval_dict["overall"][version]["F1"] = fscore(eval_dict["overall"][version])
|
| 1192 |
+
|
| 1193 |
+
#Per label results
|
| 1194 |
+
for label in eval_dict["per_label"][version]:
|
| 1195 |
+
eval_dict["per_label"][version][label]["Prec"] = precision(eval_dict["per_label"][version][label],
|
| 1196 |
+
version,
|
| 1197 |
+
config.get("weights", {}))
|
| 1198 |
+
eval_dict["per_label"][version][label]["Rec"] = recall(eval_dict["per_label"][version][label],
|
| 1199 |
+
version,
|
| 1200 |
+
config.get("weights", {}))
|
| 1201 |
+
eval_dict["per_label"][version][label]["F1"] = fscore(eval_dict["per_label"][version][label])
|
| 1202 |
+
|
| 1203 |
+
return eval_dict
|
| 1204 |
+
|
| 1205 |
+
#############################
|
| 1206 |
+
|
| 1207 |
+
def output_results(eval_dict, **config):
|
| 1208 |
+
"""
|
| 1209 |
+
Write evaluation results to the output (file).
|
| 1210 |
+
|
| 1211 |
+
The function takes an evaluation dict and writes
|
| 1212 |
+
all results to the specified output (file):
|
| 1213 |
+
|
| 1214 |
+
1. Traditional evaluation results
|
| 1215 |
+
2. Additional evaluation results (fair and/or weighted)
|
| 1216 |
+
3. Result comparison for different evaluation methods
|
| 1217 |
+
4. Confusion matrix
|
| 1218 |
+
5. Data statistics
|
| 1219 |
+
|
| 1220 |
+
Input: Evaluation dict and config dict.
|
| 1221 |
+
"""
|
| 1222 |
+
outfile = config.get("eval_out", sys.stdout)
|
| 1223 |
+
|
| 1224 |
+
### Output results for each evaluation method
|
| 1225 |
+
for version in config.get("eval_method", ["traditional", "fair"]):
|
| 1226 |
+
print(file=outfile)
|
| 1227 |
+
print("### {0} evaluation:".format(version.title()), file=outfile)
|
| 1228 |
+
|
| 1229 |
+
#Determine error categories to output
|
| 1230 |
+
if version == "traditional":
|
| 1231 |
+
cats = ["TP", "FP", "FN"]
|
| 1232 |
+
elif version == "fair" or not config.get("weights", {}):
|
| 1233 |
+
cats = ["TP", "FP", "LE", "BE", "LBE", "FN"]
|
| 1234 |
+
else:
|
| 1235 |
+
cats = list(config.get("weights").keys())
|
| 1236 |
+
|
| 1237 |
+
#Print header
|
| 1238 |
+
print("Label", "\t".join(cats), "Prec", "Rec", "F1", sep="\t", file=outfile)
|
| 1239 |
+
|
| 1240 |
+
#Output results for each label
|
| 1241 |
+
for label,val in sorted(eval_dict["per_label"][version].items()):
|
| 1242 |
+
print(label,
|
| 1243 |
+
"\t".join([str(val.get(cat, eval_dict["per_label"]["fair"].get(cat, 0)))
|
| 1244 |
+
for cat in cats]),
|
| 1245 |
+
"\t".join(["{:04.2f}".format(val.get(metric, 0)*100)
|
| 1246 |
+
for metric in ["Prec", "Rec", "F1"]]),
|
| 1247 |
+
sep="\t", file=outfile)
|
| 1248 |
+
|
| 1249 |
+
#Output overall results
|
| 1250 |
+
print("overall",
|
| 1251 |
+
"\t".join([str(eval_dict["overall"][version].get(cat, eval_dict["overall"]["fair"].get(cat, 0)))
|
| 1252 |
+
for cat in cats]),
|
| 1253 |
+
"\t".join(["{:04.2f}".format(eval_dict["overall"][version].get(metric, 0)*100)
|
| 1254 |
+
for metric in ["Prec", "Rec", "F1"]]),
|
| 1255 |
+
sep="\t", file=outfile)
|
| 1256 |
+
|
| 1257 |
+
### Output result comparison
|
| 1258 |
+
print(file=outfile)
|
| 1259 |
+
print("### Comparison:", file=outfile)
|
| 1260 |
+
print("Version", "Prec", "Rec", "F1", sep="\t", file=outfile)
|
| 1261 |
+
for version in config.get("eval_method", ["traditional", "fair"]):
|
| 1262 |
+
print(version.title(),
|
| 1263 |
+
"\t".join(["{:04.2f}".format(eval_dict["overall"][version].get(metric, 0)*100)
|
| 1264 |
+
for metric in ["Prec", "Rec", "F1"]]),
|
| 1265 |
+
sep="\t", file=outfile)
|
| 1266 |
+
|
| 1267 |
+
### Output confusion matrix
|
| 1268 |
+
print(file=outfile)
|
| 1269 |
+
print("### Confusion matrix:", file=outfile)
|
| 1270 |
+
|
| 1271 |
+
#Get set of target labels
|
| 1272 |
+
labels = {lab for lab in eval_dict["conf"]}
|
| 1273 |
+
|
| 1274 |
+
#Add system labels
|
| 1275 |
+
labels = list(labels.union({syslab
|
| 1276 |
+
for lab in eval_dict["conf"]
|
| 1277 |
+
for syslab in eval_dict["conf"][lab]}))
|
| 1278 |
+
|
| 1279 |
+
#Sort alphabetically for output
|
| 1280 |
+
labels.sort()
|
| 1281 |
+
|
| 1282 |
+
#Print top row with system labels
|
| 1283 |
+
print(r"Target\System", "\t".join(labels), sep="\t", file=outfile)
|
| 1284 |
+
|
| 1285 |
+
#Print rows with target labels and counts
|
| 1286 |
+
for targetlab in labels:
|
| 1287 |
+
print(targetlab,
|
| 1288 |
+
"\t".join([str(eval_dict["conf"][targetlab].get(syslab, 0))
|
| 1289 |
+
for syslab in labels]),
|
| 1290 |
+
sep="\t", file=outfile)
|
| 1291 |
+
|
| 1292 |
+
#Output data statistic
|
| 1293 |
+
print(file=outfile)
|
| 1294 |
+
print("### Target data stats:", file=outfile)
|
| 1295 |
+
print("Label", "Freq", "%", sep="\t", file=outfile)
|
| 1296 |
+
total = sum(config.get("data_stats", {}).values())
|
| 1297 |
+
for lab, freq in config.get("data_stats", {}).items():
|
| 1298 |
+
print(lab, freq, "{:04.2f}".format(freq/total*100), sep="\t", file=outfile)
|
| 1299 |
+
|
| 1300 |
+
#Close output if it is a file
|
| 1301 |
+
if isinstance(config.get("eval_out"), TextIOWrapper):
|
| 1302 |
+
outfile.close()
|
| 1303 |
+
|
| 1304 |
+
#############################
|
| 1305 |
+
|
| 1306 |
+
def read_config(config_file):
|
| 1307 |
+
"""
|
| 1308 |
+
Function to set program parameters as specified in the config file.
|
| 1309 |
+
|
| 1310 |
+
The following parameters are handled:
|
| 1311 |
+
|
| 1312 |
+
- target_in: path to the target file(s) with gold standard annotation
|
| 1313 |
+
-> output: 'target_files' : [list of target file paths]
|
| 1314 |
+
|
| 1315 |
+
- system_in: path to the system's output file(s), which are evaluated
|
| 1316 |
+
-> output: 'system_files' : [list of system file paths]
|
| 1317 |
+
|
| 1318 |
+
- eval_out: path or filename, where evaluation results should be stored
|
| 1319 |
+
if value is a path, output file 'path/eval.csv' is created
|
| 1320 |
+
if value is 'cmd' or missing, output is set to sys.stdout
|
| 1321 |
+
-> output: 'eval_out' : output file or sys.stdout
|
| 1322 |
+
|
| 1323 |
+
- labels: comma-separated list of labels to evaluate
|
| 1324 |
+
defaults to 'all'
|
| 1325 |
+
-> output: 'labels' : [list of labels as strings]
|
| 1326 |
+
|
| 1327 |
+
- exclude: comma-separated list of labels to exclude from evaluation
|
| 1328 |
+
always contains 'NONE' and 'EMPTY'
|
| 1329 |
+
-> output: 'exclude' : [list of labels as strings]
|
| 1330 |
+
|
| 1331 |
+
- ignore_punct: wether to ignore punctuation during evaluation (true/false)
|
| 1332 |
+
-> output: 'ignore_punct' : True/False
|
| 1333 |
+
|
| 1334 |
+
- focus: wether to focus the evaluation on 'target' or 'system' annotations
|
| 1335 |
+
defaults to 'target'
|
| 1336 |
+
-> output: 'focus' : 'target' or 'system'
|
| 1337 |
+
|
| 1338 |
+
- weights: weights that should be applied during calculation of precision
|
| 1339 |
+
and recall; at the same time can serve as a list of additional
|
| 1340 |
+
error types to include in the evaluation
|
| 1341 |
+
the weights are parsed from comma-separated input formulas of the form
|
| 1342 |
+
|
| 1343 |
+
error_type = weight * TP + weight2 * FP + weight3 * FN
|
| 1344 |
+
|
| 1345 |
+
-> output: 'weights' : { 'error type' : {
|
| 1346 |
+
'TP' : weight,
|
| 1347 |
+
'FP' : weight,
|
| 1348 |
+
'FN' : weight
|
| 1349 |
+
},
|
| 1350 |
+
'another error type' : {...}
|
| 1351 |
+
}
|
| 1352 |
+
|
| 1353 |
+
- eval_method: defines which evaluation method(s) to use
|
| 1354 |
+
one or more of: 'traditional', 'fair', 'weighted'
|
| 1355 |
+
if value is 'all' or missing, all available methods are returned
|
| 1356 |
+
-> output: 'eval_method' : [list of eval methods]
|
| 1357 |
+
|
| 1358 |
+
Input: Filename of the config file.
|
| 1359 |
+
Output: Settings dictionary.
|
| 1360 |
+
"""
|
| 1361 |
+
|
| 1362 |
+
############################
|
| 1363 |
+
|
| 1364 |
+
def _parse_config(key, val):
|
| 1365 |
+
"""
|
| 1366 |
+
Internal function to set specific values for the given keys.
|
| 1367 |
+
In case of illegal values, prints error message and sets key and/or value to None.
|
| 1368 |
+
Input: Key and value from config file
|
| 1369 |
+
Output: Modified key and value
|
| 1370 |
+
"""
|
| 1371 |
+
if key in ["target_in", "system_in"]:
|
| 1372 |
+
if os.path.isdir(val):
|
| 1373 |
+
val = os.path.normpath(val)
|
| 1374 |
+
files = [os.path.join(val, f) for f in os.listdir(val)]
|
| 1375 |
+
elif os.path.isfile(val):
|
| 1376 |
+
files = [os.path.normpath(val)]
|
| 1377 |
+
else:
|
| 1378 |
+
print("Error: '{0} = {1}' is not a file/directory.".format(key, val))
|
| 1379 |
+
return None, None
|
| 1380 |
+
if key == "target_in":
|
| 1381 |
+
return "target_files", files
|
| 1382 |
+
elif key == "system_in":
|
| 1383 |
+
return "system_files", files
|
| 1384 |
+
|
| 1385 |
+
elif key == "eval_out":
|
| 1386 |
+
if os.path.isdir(val):
|
| 1387 |
+
val = os.path.normpath(val)
|
| 1388 |
+
outfile = os.path.join(val, "eval.csv")
|
| 1389 |
+
elif os.path.isfile(val):
|
| 1390 |
+
outfile = os.path.normpath(val)
|
| 1391 |
+
elif val == "cmd":
|
| 1392 |
+
outfile = sys.stdout
|
| 1393 |
+
else:
|
| 1394 |
+
try:
|
| 1395 |
+
p, f = os.path.split(val)
|
| 1396 |
+
if not os.path.isdir(p):
|
| 1397 |
+
os.makedirs(p)
|
| 1398 |
+
outfile = os.path.join(p, f)
|
| 1399 |
+
except:
|
| 1400 |
+
print("Error: '{0} = {1}' is not a file/directory.".format(key, val))
|
| 1401 |
+
return None, None
|
| 1402 |
+
return key, outfile
|
| 1403 |
+
|
| 1404 |
+
elif key in ["labels", "exclude"]:
|
| 1405 |
+
labels = list(set([v.strip() for v in val.split(",") if v.strip()]))
|
| 1406 |
+
if key == "exclude":
|
| 1407 |
+
labels.append("NONE")
|
| 1408 |
+
labels.append("EMPTY")
|
| 1409 |
+
return key, labels
|
| 1410 |
+
|
| 1411 |
+
elif key == "ignore_punct":
|
| 1412 |
+
if val.strip().lower() == "false":
|
| 1413 |
+
return key, False
|
| 1414 |
+
else:
|
| 1415 |
+
return key, True
|
| 1416 |
+
|
| 1417 |
+
elif key == "focus":
|
| 1418 |
+
if val.strip().lower() == "system":
|
| 1419 |
+
return key, "system"
|
| 1420 |
+
else:
|
| 1421 |
+
return key, "target"
|
| 1422 |
+
|
| 1423 |
+
elif key == "weights":
|
| 1424 |
+
if val == "default":
|
| 1425 |
+
return key, {"TP" : {"TP" : 1},
|
| 1426 |
+
"FP" : {"FP" : 1},
|
| 1427 |
+
"FN" : {"FN" : 1},
|
| 1428 |
+
"LE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
| 1429 |
+
"BE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
| 1430 |
+
"LBE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5}}
|
| 1431 |
+
else:
|
| 1432 |
+
formulas = val.split(",")
|
| 1433 |
+
weights = {}
|
| 1434 |
+
|
| 1435 |
+
#For each given formula, i.e., for each error type
|
| 1436 |
+
for f in formulas:
|
| 1437 |
+
|
| 1438 |
+
#Match error type as string-initial letters before equal sign =
|
| 1439 |
+
error_type = re.match(r"\s*(?P<Error>\w+)\s*=", f)
|
| 1440 |
+
if error_type == None:
|
| 1441 |
+
print("WARNING: No error type found in weight formula '{0}'.".format(f))
|
| 1442 |
+
continue
|
| 1443 |
+
else:
|
| 1444 |
+
error_type = error_type.group("Error")
|
| 1445 |
+
|
| 1446 |
+
weights[error_type] = {}
|
| 1447 |
+
|
| 1448 |
+
#Match weight for TP
|
| 1449 |
+
w_tp = re.search(r"(?P<TP>\d*\.?\d+)\s*\*?\s*TP", f)
|
| 1450 |
+
if w_tp == None:
|
| 1451 |
+
print("WARNING: Missing weight for TP for error type {0}. Set to 0.".format(error_type))
|
| 1452 |
+
weights[error_type]["TP"] = 0
|
| 1453 |
+
else:
|
| 1454 |
+
try:
|
| 1455 |
+
w_tp = w_tp.group("TP")
|
| 1456 |
+
w_tp = float(w_tp)
|
| 1457 |
+
weights[error_type]["TP"] = w_tp
|
| 1458 |
+
except ValueError:
|
| 1459 |
+
print("WARNING: Weight for TP for error type {0} is not a number. Set to 0.".format(error_type))
|
| 1460 |
+
weights[error_type]["TP"] = 0
|
| 1461 |
+
|
| 1462 |
+
#Match weight for FP
|
| 1463 |
+
w_fp = re.search(r"(?P<FP>\d*\.?\d+)\s*\*?\s*FP", f)
|
| 1464 |
+
if w_fp == None:
|
| 1465 |
+
print("WARNING: Missing weight for FP for error type {0}. Set to 0.".format(error_type))
|
| 1466 |
+
weights[error_type]["FP"] = 0
|
| 1467 |
+
else:
|
| 1468 |
+
try:
|
| 1469 |
+
w_fp = w_fp.group("FP")
|
| 1470 |
+
w_fp = float(w_fp)
|
| 1471 |
+
weights[error_type]["FP"] = w_fp
|
| 1472 |
+
except ValueError:
|
| 1473 |
+
print("WARNING: Weight for FP for error type {0} is not a number. Set to 0.".format(error_type))
|
| 1474 |
+
weights[error_type]["FP"] = 0
|
| 1475 |
+
|
| 1476 |
+
#Match weight for FP
|
| 1477 |
+
w_fn = re.search(r"(?P<FN>\d*\.?\d+)\s*\*?\s*FN", f)
|
| 1478 |
+
if w_fn == None:
|
| 1479 |
+
print("WARNING: Missing weight for FN for error type {0}. Set to 0.".format(error_type))
|
| 1480 |
+
weights[error_type]["FN"] = 0
|
| 1481 |
+
else:
|
| 1482 |
+
try:
|
| 1483 |
+
w_fn = w_fn.group("FN")
|
| 1484 |
+
w_fn = float(w_fn)
|
| 1485 |
+
weights[error_type]["FN"] = w_fn
|
| 1486 |
+
except ValueError:
|
| 1487 |
+
print("WARNING: Weight for FN for error type {0} is not a number. Set to 0.".format(error_type))
|
| 1488 |
+
weights[error_type]["FN"] = 0
|
| 1489 |
+
if weights:
|
| 1490 |
+
#Add default weights for traditional categories if needed
|
| 1491 |
+
if not "TP" in weights:
|
| 1492 |
+
weights["TP"] = {"TP" : 1}
|
| 1493 |
+
if not "FP" in weights:
|
| 1494 |
+
weights["FP"] = {"FP" : 1}
|
| 1495 |
+
if not "FN" in weights:
|
| 1496 |
+
weights["FN"] = {"FN" : 1}
|
| 1497 |
+
return key, weights
|
| 1498 |
+
else:
|
| 1499 |
+
print("WARNING: No valid weights found. Using default weights.")
|
| 1500 |
+
return key, {"TP" : {"TP" : 1},
|
| 1501 |
+
"FP" : {"FP" : 1},
|
| 1502 |
+
"FN" : {"FN" : 1},
|
| 1503 |
+
"LE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
| 1504 |
+
"BE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5},
|
| 1505 |
+
"LBE" : {"TP" : 0, "FP" : 0.5, "FN" : 0.5}}
|
| 1506 |
+
|
| 1507 |
+
elif key == "eval_method":
|
| 1508 |
+
available_methods = ["traditional", "fair", "weighted"]
|
| 1509 |
+
if val == "all":
|
| 1510 |
+
return key, available_methods
|
| 1511 |
+
else:
|
| 1512 |
+
methods = []
|
| 1513 |
+
for m in available_methods:
|
| 1514 |
+
if m in [v.strip() for v in val.split(",")
|
| 1515 |
+
if v.strip() and v.strip().lower() in available_methods]:
|
| 1516 |
+
methods.append(m)
|
| 1517 |
+
if methods:
|
| 1518 |
+
return key, methods
|
| 1519 |
+
else:
|
| 1520 |
+
print("WARNING: No evaluation method specified. Applying all methods.")
|
| 1521 |
+
return key, available_methods
|
| 1522 |
+
|
| 1523 |
+
#############################
|
| 1524 |
+
|
| 1525 |
+
config = dict()
|
| 1526 |
+
|
| 1527 |
+
f = open(config_file, mode="r", encoding="utf-8")
|
| 1528 |
+
|
| 1529 |
+
for line in f:
|
| 1530 |
+
|
| 1531 |
+
line = line.strip()
|
| 1532 |
+
|
| 1533 |
+
#Skip empty lines and comments
|
| 1534 |
+
if not line or line.startswith("#"):
|
| 1535 |
+
continue
|
| 1536 |
+
|
| 1537 |
+
line = line.split("=")
|
| 1538 |
+
key = line[0].strip()
|
| 1539 |
+
val = "=".join(line[1:]).strip()
|
| 1540 |
+
|
| 1541 |
+
#Store original paths of input files
|
| 1542 |
+
if key in ["target_in", "system_in"]:
|
| 1543 |
+
print("{0}: {1}".format(key, val))
|
| 1544 |
+
config[key] = val
|
| 1545 |
+
|
| 1546 |
+
#Parse config
|
| 1547 |
+
key, val = _parse_config(key, val)
|
| 1548 |
+
|
| 1549 |
+
#Skip illegal configs
|
| 1550 |
+
if key is None or val is None:
|
| 1551 |
+
continue
|
| 1552 |
+
|
| 1553 |
+
#Warn before overwriting duplicate config items.
|
| 1554 |
+
if key in config:
|
| 1555 |
+
print("WARNING: duplicate config item '{0}' found.".format(key))
|
| 1556 |
+
|
| 1557 |
+
config[key] = val
|
| 1558 |
+
|
| 1559 |
+
f.close()
|
| 1560 |
+
|
| 1561 |
+
#Stop evaluation if either target or system files are missing
|
| 1562 |
+
if not "target_files" in config or not "system_files" in config:
|
| 1563 |
+
print("ERROR: Cannot evaluate without target AND system file(s). Quitting.")
|
| 1564 |
+
return None
|
| 1565 |
+
|
| 1566 |
+
#Output to sys.stdout if no evaluation file is specified
|
| 1567 |
+
elif config.get("eval_out", None) == None:
|
| 1568 |
+
config["eval_out"] = sys.stdout
|
| 1569 |
+
#Otherwise open eval file
|
| 1570 |
+
else:
|
| 1571 |
+
config["eval_out"] = open(config.get("eval_out"), mode="w", encoding="utf-8")
|
| 1572 |
+
|
| 1573 |
+
#Set labels to 'all' if no specific labels are given
|
| 1574 |
+
if config.get("labels", None) == None:
|
| 1575 |
+
config["labels"] = ["all"]
|
| 1576 |
+
|
| 1577 |
+
if config.get("eval_method", None) == None:
|
| 1578 |
+
config["eval_method"] = ["traditional", "fair", "weighted"]
|
| 1579 |
+
if not config.get("weights", {}) and "weighted" in config.get("eval_method"):
|
| 1580 |
+
if not "fair" in config["eval_method"]:
|
| 1581 |
+
config["eval_method"].append("fair")
|
| 1582 |
+
del config["eval_method"][config["eval_method"].index("weighted")]
|
| 1583 |
+
|
| 1584 |
+
#Output settings at the top of evaluation file
|
| 1585 |
+
print("### Evaluation settings:", file=config.get("eval_out"))
|
| 1586 |
+
for key in sorted(config.keys()):
|
| 1587 |
+
if key in ["target_files", "system_files", "eval_out"]:
|
| 1588 |
+
continue
|
| 1589 |
+
print("{0}: {1}".format(key, config.get(key)), file=config.get("eval_out"))
|
| 1590 |
+
print(file=config.get("eval_out"))
|
| 1591 |
+
|
| 1592 |
+
return config
|
| 1593 |
+
|
| 1594 |
+
###########################
|
| 1595 |
+
|
| 1596 |
+
if __name__ == '__main__':
|
| 1597 |
+
parser = argparse.ArgumentParser()
|
| 1598 |
+
parser.add_argument('--config', help='Configuration File', required=True)
|
| 1599 |
+
|
| 1600 |
+
args = parser.parse_args()
|
| 1601 |
+
|
| 1602 |
+
#Read config file into dict
|
| 1603 |
+
config = read_config(args.config)
|
| 1604 |
+
|
| 1605 |
+
#Create empty eval dict
|
| 1606 |
+
eval_dict = {"overall" : {"traditional" : {}, "fair" : {}},
|
| 1607 |
+
"per_label" : {"traditional" : {}, "fair" : {}},
|
| 1608 |
+
"conf" : {}}
|
| 1609 |
+
for method in config.get("eval_method", ["traditional", "fair"]):
|
| 1610 |
+
eval_dict["overall"][method] = {}
|
| 1611 |
+
eval_dict["per_label"][method] = {}
|
| 1612 |
+
|
| 1613 |
+
#Create dict to count target annotations
|
| 1614 |
+
config["data_stats"] = {}
|
| 1615 |
+
|
| 1616 |
+
#Get system and target files to compare
|
| 1617 |
+
#The files must have the same name to be compared
|
| 1618 |
+
file_pairs = []
|
| 1619 |
+
for t in config.get("target_files", []):
|
| 1620 |
+
s = [f for f in config.get("system_files", [])
|
| 1621 |
+
if os.path.split(t)[-1] == os.path.split(f)[-1]]
|
| 1622 |
+
if s:
|
| 1623 |
+
file_pairs.append((t, s[0]))
|
| 1624 |
+
|
| 1625 |
+
#Go through target and system files in parallel
|
| 1626 |
+
for target_file, system_file in file_pairs:
|
| 1627 |
+
|
| 1628 |
+
#For each sentence pair
|
| 1629 |
+
for target_sentence, system_sentence in zip(get_sentences(target_file),
|
| 1630 |
+
get_sentences(system_file)):
|
| 1631 |
+
|
| 1632 |
+
#Get spans
|
| 1633 |
+
target_spans = get_spans(target_sentence, **config)
|
| 1634 |
+
system_spans = get_spans(system_sentence, **config)
|
| 1635 |
+
|
| 1636 |
+
#Count target annotations for simple statistics.
|
| 1637 |
+
#Result is stored in data_stats key of config dict.
|
| 1638 |
+
annotation_stats(target_spans, **config)
|
| 1639 |
+
|
| 1640 |
+
#Evaluate spans
|
| 1641 |
+
sent_counts = compare_spans(target_spans, system_spans,
|
| 1642 |
+
config.get("focus", "target"))
|
| 1643 |
+
|
| 1644 |
+
#Add results to eval dict
|
| 1645 |
+
eval_dict = add_dict(eval_dict, sent_counts)
|
| 1646 |
+
|
| 1647 |
+
#Calculate overall results
|
| 1648 |
+
eval_dict = calculate_results(eval_dict, **config)
|
| 1649 |
+
|
| 1650 |
+
#Output results
|
| 1651 |
+
output_results(eval_dict, **config)
|
README.md
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: FairEvaluation
|
| 3 |
+
tags:
|
| 4 |
+
- evaluate
|
| 5 |
+
- metric
|
| 6 |
+
description: "TODO: add a description here"
|
| 7 |
+
sdk: gradio
|
| 8 |
+
sdk_version: 3.0.2
|
| 9 |
+
app_file: app.py
|
| 10 |
+
pinned: false
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
# Metric: Fair Evaluation
|
| 14 |
+
|
| 15 |
+
## Metric Description
|
| 16 |
+
The traditional evaluation of NLP labeled spans with precision, recall, and F1-score leads to double penalties for
|
| 17 |
+
close-to-correct annotations. As Manning (2006) argues in an article about named entity recognition, this can lead to
|
| 18 |
+
undesirable effects when systems are optimized for these traditional metrics.
|
| 19 |
+
|
| 20 |
+
Building on his ideas, Katrin Ortmann (2022) develops FairEval: a new evaluation method that more accurately reflects
|
| 21 |
+
true annotation quality by ensuring that every error is counted only once. In addition to the traditional categories of
|
| 22 |
+
true positives (TP), false positives (FP), and false negatives (FN), the new method takes into account the more
|
| 23 |
+
fine-grained error types suggested by Manning: labeling errors (LE), boundary errors (BE), and labeling-boundary
|
| 24 |
+
errors (LBE). Additionally, the system also distinguishes different types of boundary errors:
|
| 25 |
+
- BES: the system's annotation is smaller than the target span
|
| 26 |
+
- BEL: the system's annotation is larger than the target span
|
| 27 |
+
- BEO: the system span overlaps with the target span
|
| 28 |
+
|
| 29 |
+
For more information on the reasoning and computation of the fair metrics from the redefined error count pleas refer to the [original paper](https://aclanthology.org/2022.lrec-1.150.pdf).
|
| 30 |
+
|
| 31 |
+
## How to Use
|
| 32 |
+
The current HuggingFace implementation accepts input for the predictions and references as sentences in IOB format.
|
| 33 |
+
The simplest use example would be:
|
| 34 |
+
|
| 35 |
+
```python
|
| 36 |
+
>>> faireval = evaluate.load("illorca/fairevaluation")
|
| 37 |
+
>>> pred = ['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O', 'B-PER', 'I-PER', 'O']
|
| 38 |
+
>>> ref = ['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O', 'B-PER', 'I-PER', 'O']
|
| 39 |
+
>>> results = faireval.compute(predictions=pred, references=ref)
|
| 40 |
+
```
|
| 41 |
+
|
| 42 |
+
### Inputs
|
| 43 |
+
- **predictions** *(list)*: list of predictions to score. Each predicted sentence
|
| 44 |
+
should be a list of IOB-formatted labels corresponding to each sentence token.
|
| 45 |
+
Predicted sentences must have the same number of tokens as the references'.
|
| 46 |
+
- **references** *(list)*: list of reference for each prediction. Each reference sentence
|
| 47 |
+
should be a list of IOB-formatted labels corresponding to each sentence token.
|
| 48 |
+
|
| 49 |
+
### Output Values
|
| 50 |
+
A dictionary with:
|
| 51 |
+
- TP: count of True Positives
|
| 52 |
+
- FP: count of False Positives
|
| 53 |
+
- FN: count of False Negatives
|
| 54 |
+
- LE: count of Labeling Errors
|
| 55 |
+
- BE: count of Boundary Errors
|
| 56 |
+
- BEO: segment of the BE where the prediction overlaps with the reference
|
| 57 |
+
- BES: segment of the BE where the prediction is smaller than the reference
|
| 58 |
+
- BEL: segment of the BE where the prediction is larger than the reference
|
| 59 |
+
- LBE : count of Label-and-Boundary Errors
|
| 60 |
+
- Prec: fair precision
|
| 61 |
+
- Rec: fair recall
|
| 62 |
+
- F1: fair F1-score
|
| 63 |
+
|
| 64 |
+
#### Values from Popular Papers
|
| 65 |
+
*Examples, preferrably with links to leaderboards or publications, to papers that have reported this metric, along with the values they have reported.*
|
| 66 |
+
|
| 67 |
+
*Under construction*
|
| 68 |
+
|
| 69 |
+
### Examples
|
| 70 |
+
*Code examples of the metric being used. Try to include examples that clear up any potential ambiguity left from the metric description above. If possible, provide a range of examples that show both typical and atypical results, as well as examples where a variety of input parameters are passed.*
|
| 71 |
+
|
| 72 |
+
*Under construction*
|
| 73 |
+
|
| 74 |
+
## Limitations and Bias
|
| 75 |
+
*Note any known limitations or biases that the metric has, with links and references if possible.*
|
| 76 |
+
|
| 77 |
+
*Under construction*
|
| 78 |
+
|
| 79 |
+
## Citation
|
| 80 |
+
Ortmann, Katrin. 2022. Fine-Grained Error Analysis and Fair Evaluation of Labeled Spans. In *Proceedings of the Language Resources and Evaluation Conference (LREC)*, Marseille, France, pages 1400–1407. [PDF](https://aclanthology.org/2022.lrec-1.150.pdf)
|
| 81 |
+
|
| 82 |
+
```bibtex
|
| 83 |
+
@inproceedings{ortmann2022,
|
| 84 |
+
title = {Fine-Grained Error Analysis and Fair Evaluation of Labeled Spans},
|
| 85 |
+
author = {Katrin Ortmann},
|
| 86 |
+
url = {https://aclanthology.org/2022.lrec-1.150},
|
| 87 |
+
year = {2022},
|
| 88 |
+
date = {2022-06-21},
|
| 89 |
+
booktitle = {Proceedings of the Language Resources and Evaluation Conference (LREC)},
|
| 90 |
+
pages = {1400-1407},
|
| 91 |
+
publisher = {European Language Resources Association},
|
| 92 |
+
address = {Marseille, France},
|
| 93 |
+
pubstate = {published},
|
| 94 |
+
type = {inproceedings}
|
| 95 |
+
}
|
| 96 |
+
```
|
app.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import evaluate
|
| 2 |
+
from evaluate.utils import launch_gradio_widget
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
module = evaluate.load("illorca/fairevaluation")
|
| 6 |
+
launch_gradio_widget(module)
|
fairevaluation.py
ADDED
|
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
# huggingface packages
|
| 16 |
+
import evaluate
|
| 17 |
+
import datasets
|
| 18 |
+
|
| 19 |
+
# faireval functions
|
| 20 |
+
from .FairEval import *
|
| 21 |
+
|
| 22 |
+
# packages to manage input formats
|
| 23 |
+
import importlib
|
| 24 |
+
from typing import List, Optional, Union
|
| 25 |
+
from seqeval.metrics.v1 import check_consistent_length
|
| 26 |
+
from seqeval.scheme import Entities, Token, auto_detect
|
| 27 |
+
|
| 28 |
+
_CITATION = """\
|
| 29 |
+
@inproceedings{ortmann2022,
|
| 30 |
+
title = {Fine-Grained Error Analysis and Fair Evaluation of Labeled Spans},
|
| 31 |
+
author = {Katrin Ortmann},
|
| 32 |
+
url = {https://aclanthology.org/2022.lrec-1.150},
|
| 33 |
+
year = {2022},
|
| 34 |
+
date = {2022-06-21},
|
| 35 |
+
booktitle = {Proceedings of the Language Resources and Evaluation Conference (LREC)},
|
| 36 |
+
pages = {1400-1407},
|
| 37 |
+
publisher = {European Language Resources Association},
|
| 38 |
+
address = {Marseille, France},
|
| 39 |
+
pubstate = {published},
|
| 40 |
+
type = {inproceedings}
|
| 41 |
+
}
|
| 42 |
+
"""
|
| 43 |
+
|
| 44 |
+
_DESCRIPTION = """\
|
| 45 |
+
New evaluation method that more accurately reflects true annotation quality by ensuring that every error is counted
|
| 46 |
+
only once - avoiding the penalty to close-to-target annotations happening in traditional evaluation.
|
| 47 |
+
In addition to the traditional categories of true positives (TP), false positives (FP), and false negatives
|
| 48 |
+
(FN), the new method takes into account the more fine-grained error types suggested by Manning: labeling errors (LE),
|
| 49 |
+
boundary errors (BE), and labeling-boundary errors (LBE). Additionally, the system also distinguishes different types
|
| 50 |
+
of boundary errors: BES (the system's annotation is smaller than the target span), BEL (the system's annotation is
|
| 51 |
+
larger than the target span) and BEO (the system span overlaps with the target span)
|
| 52 |
+
"""
|
| 53 |
+
|
| 54 |
+
_KWARGS_DESCRIPTION = """
|
| 55 |
+
Counts the number of redefined traditional errors (FP, FN), newly defined errors (BE, LE, LBE) and fine-grained
|
| 56 |
+
boundary errors (BES, BEL, BEO). Then computes the fair Precision, Recall and F1-Score.
|
| 57 |
+
For the computation of the metrics from the error count please refer to: https://aclanthology.org/2022.lrec-1.150.pdf
|
| 58 |
+
Args:
|
| 59 |
+
predictions: list of predictions to score. Each predicted sentence
|
| 60 |
+
should be a list of IOB-formatted labels corresponding to each sentence token.
|
| 61 |
+
Predicted sentences must have the same number of tokens as the references'.
|
| 62 |
+
references: list of reference for each prediction. Each reference sentence
|
| 63 |
+
should be a list of IOB-formatted labels corresponding to each sentence token.
|
| 64 |
+
Returns:
|
| 65 |
+
A dictionary with:
|
| 66 |
+
TP: count of True Positives
|
| 67 |
+
FP: count of False Positives
|
| 68 |
+
FN: count of False Negatives
|
| 69 |
+
LE: count of Labeling Errors
|
| 70 |
+
BE: count of Boundary Errors
|
| 71 |
+
BEO: segment of the BE where the prediction overlaps with the reference
|
| 72 |
+
BES: segment of the BE where the prediction is smaller than the reference
|
| 73 |
+
BEL: segment of the BE where the prediction is larger than the reference
|
| 74 |
+
LBE : count of Label-and-Boundary Errors
|
| 75 |
+
Prec: fair precision
|
| 76 |
+
Rec: fair recall
|
| 77 |
+
F1: fair F1-score
|
| 78 |
+
Examples:
|
| 79 |
+
>>> faireval = evaluate.load("illorca/fairevaluation")
|
| 80 |
+
>>> pred = ['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O', 'B-PER', 'I-PER', 'O']
|
| 81 |
+
>>> ref = ['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O', 'B-PER', 'I-PER', 'O']
|
| 82 |
+
>>> results = faireval.compute(predictions=pred, references=ref)
|
| 83 |
+
>>> print(results)
|
| 84 |
+
{'TP': 1,
|
| 85 |
+
'FP': 0,
|
| 86 |
+
'FN': 0,
|
| 87 |
+
'LE': 0,
|
| 88 |
+
'BE': 1,
|
| 89 |
+
'BEO': 0,
|
| 90 |
+
'BES': 0,
|
| 91 |
+
'BEL': 1,
|
| 92 |
+
'LBE': 0,
|
| 93 |
+
'Prec': 0.6666666666666666,
|
| 94 |
+
'Rec': 0.6666666666666666,
|
| 95 |
+
'F1': 0.6666666666666666}
|
| 96 |
+
"""
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
| 100 |
+
class FairEvaluation(evaluate.Metric):
|
| 101 |
+
"""Counts the number of redefined traditional errors (FP, FN), newly defined errors (BE, LE, LBE) and fine-grained
|
| 102 |
+
boundary errors (BES, BEL, BEO). Then computes the fair Precision, Recall and F1-Score. """
|
| 103 |
+
|
| 104 |
+
def _info(self):
|
| 105 |
+
return evaluate.MetricInfo(
|
| 106 |
+
# This is the description that will appear on the modules page.
|
| 107 |
+
module_type="metric",
|
| 108 |
+
description=_DESCRIPTION,
|
| 109 |
+
citation=_CITATION,
|
| 110 |
+
inputs_description=_KWARGS_DESCRIPTION,
|
| 111 |
+
# This defines the format of each prediction and reference
|
| 112 |
+
features=datasets.Features({
|
| 113 |
+
"predictions": datasets.Sequence(datasets.Value("string", id="label"), id="sequence"),
|
| 114 |
+
"references": datasets.Sequence(datasets.Value("string", id="label"), id="sequence"),
|
| 115 |
+
}),
|
| 116 |
+
# Homepage of the module for documentation
|
| 117 |
+
homepage="https://huggingface.co/spaces/illorca/fairevaluation",
|
| 118 |
+
# Additional links to the codebase or references
|
| 119 |
+
codebase_urls=["https://github.com/rubcompling/FairEval#acknowledgement"],
|
| 120 |
+
reference_urls=["https://aclanthology.org/2022.lrec-1.150.pdf"]
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
def _compute(
|
| 124 |
+
self,
|
| 125 |
+
predictions,
|
| 126 |
+
references,
|
| 127 |
+
suffix: bool = False,
|
| 128 |
+
scheme: Optional[str] = None,
|
| 129 |
+
mode: Optional[str] = 'fair',
|
| 130 |
+
error_format: Optional[str] = 'count',
|
| 131 |
+
sample_weight: Optional[List[int]] = None,
|
| 132 |
+
zero_division: Union[str, int] = "warn",
|
| 133 |
+
):
|
| 134 |
+
"""Returns the error counts and fair scores"""
|
| 135 |
+
# (1) SEQEVAL INPUT MANAGEMENT
|
| 136 |
+
if scheme is not None:
|
| 137 |
+
try:
|
| 138 |
+
scheme_module = importlib.import_module("seqeval.scheme")
|
| 139 |
+
scheme = getattr(scheme_module, scheme)
|
| 140 |
+
except AttributeError:
|
| 141 |
+
raise ValueError(f"Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {scheme}")
|
| 142 |
+
|
| 143 |
+
y_true = references
|
| 144 |
+
y_pred = predictions
|
| 145 |
+
|
| 146 |
+
check_consistent_length(y_true, y_pred)
|
| 147 |
+
|
| 148 |
+
if scheme is None or not issubclass(scheme, Token):
|
| 149 |
+
scheme = auto_detect(y_true, suffix)
|
| 150 |
+
|
| 151 |
+
true_spans = Entities(y_true, scheme, suffix).entities
|
| 152 |
+
pred_spans = Entities(y_pred, scheme, suffix).entities
|
| 153 |
+
|
| 154 |
+
# (2) TRANSFORM FROM SEQEVAL TO FAIREVAL SPAN FORMAT
|
| 155 |
+
true_spans = seq_to_fair(true_spans)
|
| 156 |
+
pred_spans = seq_to_fair(pred_spans)
|
| 157 |
+
|
| 158 |
+
# (3) COUNT ERRORS AND CALCULATE SCORES
|
| 159 |
+
total_errors = compare_spans([], []) # initialize empty error count dictionary
|
| 160 |
+
|
| 161 |
+
for i in range(len(true_spans)):
|
| 162 |
+
sentence_errors = compare_spans(true_spans[i], pred_spans[i])
|
| 163 |
+
total_errors = add_dict(total_errors, sentence_errors)
|
| 164 |
+
|
| 165 |
+
results = calculate_results(total_errors)
|
| 166 |
+
del results['conf']
|
| 167 |
+
|
| 168 |
+
# (4) SELECT OUTPUT MODE AND REFORMAT AS SEQEVAL HUGGINGFACE OUTPUT
|
| 169 |
+
output = {}
|
| 170 |
+
total_trad_errors = results['overall']['traditional']['FP'] + results['overall']['traditional']['FN']
|
| 171 |
+
total_fair_errors = results['overall']['fair']['FP'] + results['overall']['fair']['FN'] + \
|
| 172 |
+
results['overall']['fair']['LE'] + results['overall']['fair']['BE'] + \
|
| 173 |
+
results['overall']['fair']['LBE']
|
| 174 |
+
|
| 175 |
+
assert mode in ['traditional', 'fair'], 'mode must be \'traditional\' or \'fair\''
|
| 176 |
+
assert error_format in ['count', 'proportion'], 'error_format must be \'count\' or \'proportion\''
|
| 177 |
+
|
| 178 |
+
if mode == 'traditional':
|
| 179 |
+
for k, v in results['per_label'][mode].items():
|
| 180 |
+
if error_format == 'count':
|
| 181 |
+
output[k] = {'precision': v['Prec'], 'recall': v['Rec'], 'f1': v['F1'], 'TP': v['TP'],
|
| 182 |
+
'FP': v['FP'], 'FN': v['FN']}
|
| 183 |
+
elif error_format == 'proportion':
|
| 184 |
+
output[k] = {'precision': v['Prec'], 'recall': v['Rec'], 'f1': v['F1'], 'TP': v['TP'],
|
| 185 |
+
'FP': v['FP'] / total_trad_errors, 'FN': v['FN'] / total_trad_errors}
|
| 186 |
+
elif mode == 'fair':
|
| 187 |
+
for k, v in results['per_label'][mode].items():
|
| 188 |
+
if error_format == 'count':
|
| 189 |
+
output[k] = {'precision': v['Prec'], 'recall': v['Rec'], 'f1': v['F1'], 'TP': v['TP'],
|
| 190 |
+
'FP': v['FP'], 'FN': v['FN'], 'LE': v['LE'], 'BE': v['BE'], 'LBE': v['LBE']}
|
| 191 |
+
elif error_format == 'proportion':
|
| 192 |
+
output[k] = {'precision': v['Prec'], 'recall': v['Rec'], 'f1': v['F1'], 'TP': v['TP'],
|
| 193 |
+
'FP': v['FP'] / total_fair_errors, 'FN': v['FN'] / total_fair_errors,
|
| 194 |
+
'LE': v['LE'] / total_fair_errors, 'BE': v['BE'] / total_fair_errors,
|
| 195 |
+
'LBE': v['LBE'] / total_fair_errors}
|
| 196 |
+
|
| 197 |
+
output['overall_precision'] = results['overall'][mode]['Prec']
|
| 198 |
+
output['overall_recall'] = results['overall'][mode]['Rec']
|
| 199 |
+
output['overall_f1'] = results['overall'][mode]['F1']
|
| 200 |
+
|
| 201 |
+
if mode == 'traditional':
|
| 202 |
+
output['TP'] = results['overall'][mode]['TP']
|
| 203 |
+
output['FP'] = results['overall'][mode]['FP']
|
| 204 |
+
output['FN'] = results['overall'][mode]['FN']
|
| 205 |
+
if error_format == 'proportion':
|
| 206 |
+
output['FP'] = output['FP'] / total_trad_errors
|
| 207 |
+
output['FN'] = output['FN'] / total_trad_errors
|
| 208 |
+
elif mode == 'fair':
|
| 209 |
+
output['TP'] = results['overall'][mode]['TP']
|
| 210 |
+
output['FP'] = results['overall'][mode]['FP']
|
| 211 |
+
output['FN'] = results['overall'][mode]['FN']
|
| 212 |
+
output['LE'] = results['overall'][mode]['LE']
|
| 213 |
+
output['BE'] = results['overall'][mode]['BE']
|
| 214 |
+
output['LBE'] = results['overall'][mode]['LBE']
|
| 215 |
+
if error_format == 'proportion':
|
| 216 |
+
output['FP'] = output['FP'] / total_fair_errors
|
| 217 |
+
output['FN'] = output['FN'] / total_fair_errors
|
| 218 |
+
output['LE'] = output['LE'] / total_fair_errors
|
| 219 |
+
output['BE'] = output['BE'] / total_fair_errors
|
| 220 |
+
output['LBE'] = output['LBE'] / total_fair_errors
|
| 221 |
+
|
| 222 |
+
return output
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
def seq_to_fair(seq_sentences):
|
| 226 |
+
out = []
|
| 227 |
+
for seq_sentence in seq_sentences:
|
| 228 |
+
sentence = []
|
| 229 |
+
for entity in seq_sentence:
|
| 230 |
+
span = str(entity).replace('(', '').replace(')', '').replace(' ', '').split(',')
|
| 231 |
+
span = span[1:]
|
| 232 |
+
span[-1] = int(span[-1]) - 1
|
| 233 |
+
span[1] = int(span[1])
|
| 234 |
+
span.append({i for i in range(span[1], span[2] + 1)})
|
| 235 |
+
sentence.append(span)
|
| 236 |
+
out.append(sentence)
|
| 237 |
+
return out
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
git+https://github.com/huggingface/evaluate@main
|
| 2 |
+
|
| 3 |
+
seqeval
|