hf-docs / app.py
julien-c's picture
julien-c HF staff
Fixes
bdbadf6 verified
import time
import os
from typing import Literal, Tuple
import gradio as gr
import torch
from transformers import AutoModel, AutoTokenizer
import meilisearch
tokenizer = AutoTokenizer.from_pretrained("BAAI/bge-base-en-v1.5")
model = AutoModel.from_pretrained("BAAI/bge-base-en-v1.5")
model.eval()
cuda_available = torch.cuda.is_available()
print(f"CUDA available: {cuda_available}")
meilisearch_client = meilisearch.Client(
"https://edge.meilisearch.com", os.environ["MEILISEARCH_KEY"]
)
meilisearch_index_name = "docs-embed"
meilisearch_index = meilisearch_client.index(meilisearch_index_name)
output_options = ["RAG-friendly", "human-friendly"]
def search_embeddings(
query_text: str, output_option: Literal["RAG-friendly", "human-friendly"]
) -> Tuple[str, str]:
start_time_embedding = time.time()
query_prefix = "Represent this sentence for searching code documentation: "
query_tokens = tokenizer(
query_prefix + query_text,
padding=True,
truncation=True,
return_tensors="pt",
max_length=512,
)
# step1: tokenizer the query
with torch.no_grad():
# Compute token embeddings
model_output = model(**query_tokens)
sentence_embeddings = model_output[0][:, 0]
# normalize embeddings
sentence_embeddings = torch.nn.functional.normalize(
sentence_embeddings, p=2, dim=1
)
sentence_embeddings_list = sentence_embeddings[0].tolist()
elapsed_time_embedding = time.time() - start_time_embedding
# step2: search meilisearch
start_time_meilisearch = time.time()
response = meilisearch_index.search(
"",
opt_params={
"vector": sentence_embeddings_list,
"hybrid": {"semanticRatio": 1.0},
"limit": 5,
"attributesToRetrieve": [
"text",
"source_page_url",
"source_page_title",
"library",
],
},
)
elapsed_time_meilisearch = time.time() - start_time_meilisearch
hits = response["hits"]
sources_md = [
f"[\"{hit['source_page_title']}\"]({hit['source_page_url']})" for hit in hits
]
sources_md = ", ".join(sources_md)
# step3: present the results in markdown
if output_option == "human-friendly":
md = f"Stats:\n\nembedding time: {elapsed_time_embedding:.2f}s\n\nmeilisearch time: {elapsed_time_meilisearch:.2f}s\n\n---\n\n"
for hit in hits:
text, source_page_url, source_page_title = (
hit["text"],
hit["source_page_url"],
hit["source_page_title"],
)
source = f'src: ["{source_page_title}"]({source_page_url})'
md += text + f"\n\n{source}\n\n---\n\n"
return md, sources_md
elif output_option == "RAG-friendly":
hit_texts = [hit["text"] for hit in hits]
hit_text_str = "\n------------\n".join(hit_texts)
return hit_text_str, sources_md
demo = gr.Interface(
fn=search_embeddings,
inputs=[
gr.Textbox(
label="enter your query", placeholder="Type Markdown here...", lines=10
),
gr.Radio(
label="Select an output option",
choices=output_options,
value="RAG-friendly",
),
],
outputs=[gr.Markdown(), gr.Markdown()],
title="HF Docs Embeddings Explorer",
allow_flagging="never",
)
if __name__ == "__main__":
demo.launch()