Harheem Kim commited on
Commit
e27700b
·
1 Parent(s): 5a2133a
.DS_Store ADDED
Binary file (6.15 kB). View file
 
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
  scale-hf-logo.png filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
  scale-hf-logo.png filter=lfs diff=lfs merge=lfs -text
36
+ *.png filter=lfs diff=lfs merge=lfs -text
Makefile DELETED
@@ -1,13 +0,0 @@
1
- .PHONY: style format
2
-
3
-
4
- style:
5
- python -m black --line-length 119 .
6
- python -m isort .
7
- ruff check --fix .
8
-
9
-
10
- quality:
11
- python -m black --check --line-length 119 .
12
- python -m isort --check-only .
13
- ruff check .
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md CHANGED
@@ -7,42 +7,11 @@ sdk: gradio
7
  app_file: app.py
8
  pinned: true
9
  license: apache-2.0
10
- short_description: Duplicate this leaderboard to initialize your own!
11
  sdk_version: 5.43.1
12
  tags:
13
  - leaderboard
14
  ---
15
 
16
- # Start the configuration
17
 
18
- Most of the variables to change for a default leaderboard are in `src/env.py` (replace the path for your leaderboard) and `src/about.py` (for tasks).
19
-
20
- Results files should have the following format and be stored as json files:
21
- ```json
22
- {
23
- "config": {
24
- "model_dtype": "torch.float16", # or torch.bfloat16 or 8bit or 4bit
25
- "model_name": "path of the model on the hub: org/model",
26
- "model_sha": "revision on the hub",
27
- },
28
- "results": {
29
- "task_name": {
30
- "metric_name": score,
31
- },
32
- "task_name2": {
33
- "metric_name": score,
34
- }
35
- }
36
- }
37
- ```
38
-
39
- Request files are created automatically by this tool.
40
-
41
- If you encounter problem on the space, don't hesitate to restart it to remove the create eval-queue, eval-queue-bk, eval-results and eval-results-bk created folder.
42
-
43
- # Code logic for more complex edits
44
-
45
- You'll find
46
- - the main table' columns names and properties in `src/display/utils.py`
47
- - the logic to read all results and request files, then convert them in dataframe lines, in `src/leaderboard/read_evals.py`, and `src/populate.py`
48
- - the logic to allow or filter submissions in `src/submission/submit.py` and `src/submission/check_validity.py`
 
7
  app_file: app.py
8
  pinned: true
9
  license: apache-2.0
10
+ short_description: Ranking of LLMs for agentic tasks
11
  sdk_version: 5.43.1
12
  tags:
13
  - leaderboard
14
  ---
15
 
 
16
 
17
+ An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app.py CHANGED
@@ -1,204 +1,20 @@
1
- import gradio as gr
2
- from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
3
- import pandas as pd
4
- from apscheduler.schedulers.background import BackgroundScheduler
5
- from huggingface_hub import snapshot_download
6
-
7
- from src.about import (
8
- CITATION_BUTTON_LABEL,
9
- CITATION_BUTTON_TEXT,
10
- EVALUATION_QUEUE_TEXT,
11
- INTRODUCTION_TEXT,
12
- LLM_BENCHMARKS_TEXT,
13
- TITLE,
14
- )
15
- from src.display.css_html_js import custom_css
16
- from src.display.utils import (
17
- BENCHMARK_COLS,
18
- COLS,
19
- EVAL_COLS,
20
- EVAL_TYPES,
21
- AutoEvalColumn,
22
- ModelType,
23
- fields,
24
- WeightType,
25
- Precision
26
- )
27
- from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
28
- from src.populate import get_evaluation_queue_df, get_leaderboard_df
29
- from src.submission.submit import add_new_eval
30
-
31
-
32
- def restart_space():
33
- API.restart_space(repo_id=REPO_ID)
34
-
35
- ### Space initialisation
36
- try:
37
- print(EVAL_REQUESTS_PATH)
38
- snapshot_download(
39
- repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
40
- )
41
- except Exception:
42
- restart_space()
43
- try:
44
- print(EVAL_RESULTS_PATH)
45
- snapshot_download(
46
- repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
47
- )
48
- except Exception:
49
- restart_space()
50
-
51
-
52
- LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
53
-
54
- (
55
- finished_eval_queue_df,
56
- running_eval_queue_df,
57
- pending_eval_queue_df,
58
- ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
59
 
60
- def init_leaderboard(dataframe):
61
- if dataframe is None or dataframe.empty:
62
- raise ValueError("Leaderboard DataFrame is empty or None.")
63
- return Leaderboard(
64
- value=dataframe,
65
- datatype=[c.type for c in fields(AutoEvalColumn)],
66
- select_columns=SelectColumns(
67
- default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
68
- cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
69
- label="Select Columns to Display:",
70
- ),
71
- search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
72
- hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
73
- filter_columns=[
74
- ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
75
- ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
76
- ColumnFilter(
77
- AutoEvalColumn.params.name,
78
- type="slider",
79
- min=0.01,
80
- max=150,
81
- label="Select the number of parameters (B)",
82
- ),
83
- ColumnFilter(
84
- AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
85
- ),
86
- ],
87
- bool_checkboxgroup_label="Hide models",
88
- interactive=False,
89
- )
90
 
 
 
91
 
92
- demo = gr.Blocks(css=custom_css)
93
- with demo:
94
- gr.HTML(TITLE)
95
- gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
96
-
97
- with gr.Tabs(elem_classes="tab-buttons") as tabs:
98
- with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
99
- leaderboard = init_leaderboard(LEADERBOARD_DF)
100
-
101
- with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
102
- gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
103
-
104
- with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
105
- with gr.Column():
106
- with gr.Row():
107
- gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
108
-
109
- with gr.Column():
110
- with gr.Accordion(
111
- f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
112
- open=False,
113
- ):
114
- with gr.Row():
115
- finished_eval_table = gr.components.Dataframe(
116
- value=finished_eval_queue_df,
117
- headers=EVAL_COLS,
118
- datatype=EVAL_TYPES,
119
- row_count=5,
120
- )
121
- with gr.Accordion(
122
- f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
123
- open=False,
124
- ):
125
- with gr.Row():
126
- running_eval_table = gr.components.Dataframe(
127
- value=running_eval_queue_df,
128
- headers=EVAL_COLS,
129
- datatype=EVAL_TYPES,
130
- row_count=5,
131
- )
132
-
133
- with gr.Accordion(
134
- f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
135
- open=False,
136
- ):
137
- with gr.Row():
138
- pending_eval_table = gr.components.Dataframe(
139
- value=pending_eval_queue_df,
140
- headers=EVAL_COLS,
141
- datatype=EVAL_TYPES,
142
- row_count=5,
143
- )
144
- with gr.Row():
145
- gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
146
-
147
- with gr.Row():
148
- with gr.Column():
149
- model_name_textbox = gr.Textbox(label="Model name")
150
- revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
151
- model_type = gr.Dropdown(
152
- choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
153
- label="Model type",
154
- multiselect=False,
155
- value=None,
156
- interactive=True,
157
- )
158
 
159
- with gr.Column():
160
- precision = gr.Dropdown(
161
- choices=[i.value.name for i in Precision if i != Precision.Unknown],
162
- label="Precision",
163
- multiselect=False,
164
- value="float16",
165
- interactive=True,
166
- )
167
- weight_type = gr.Dropdown(
168
- choices=[i.value.name for i in WeightType],
169
- label="Weights type",
170
- multiselect=False,
171
- value="Original",
172
- interactive=True,
173
- )
174
- base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
175
 
176
- submit_button = gr.Button("Submit Eval")
177
- submission_result = gr.Markdown()
178
- submit_button.click(
179
- add_new_eval,
180
- [
181
- model_name_textbox,
182
- base_model_name_textbox,
183
- revision_name_textbox,
184
- precision,
185
- weight_type,
186
- model_type,
187
- ],
188
- submission_result,
189
- )
190
 
191
- with gr.Row():
192
- with gr.Accordion("📙 Citation", open=False):
193
- citation_button = gr.Textbox(
194
- value=CITATION_BUTTON_TEXT,
195
- label=CITATION_BUTTON_LABEL,
196
- lines=20,
197
- elem_id="citation-button",
198
- show_copy_button=True,
199
- )
200
 
201
- scheduler = BackgroundScheduler()
202
- scheduler.add_job(restart_space, "interval", seconds=1800)
203
- scheduler.start()
204
- demo.queue(default_concurrency_limit=40).launch()
 
1
+ # Add this at the top of your script
2
+ import warnings
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
+ warnings.filterwarnings("ignore")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
+ import gradio as gr
7
+ from tabs.leaderboard_v1 import create_leaderboard_v2_interface
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
+ def create_app():
11
+ with gr.Blocks(
12
+ theme=gr.themes.Default(primary_hue=gr.themes.colors.red)
13
+ ) as app:
14
+ create_leaderboard_v2_interface()
 
 
 
 
 
 
 
 
 
 
 
15
 
16
+ return app
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
 
 
 
 
 
 
 
 
 
18
 
19
+ demo = create_app()
20
+ demo.launch()
 
 
banner.png ADDED

Git LFS Details

  • SHA256: a1d05c295328a95fac66484c30ef19f25367125e3a83be21c1c39f783d933896
  • Pointer size: 131 Bytes
  • Size of remote file: 867 kB
combined_evaluation_summary.csv ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ Model,Vendor,Model Type,L1_Total_Tasks,L2_Total_Tasks,L3_Total_Tasks,L4_Total_Tasks,L5_Total_Tasks,L6_Total_Tasks,L7_Total_Tasks,L1_Evaluated_Tasks,L2_Evaluated_Tasks,L3_Evaluated_Tasks,L4_Evaluated_Tasks,L5_Evaluated_Tasks,L6_Evaluated_Tasks,L7_Evaluated_Tasks,L1_Avg_Exec_Time,L2_Avg_Exec_Time,L3_Avg_Exec_Time,L4_Avg_Exec_Time,L5_Avg_Exec_Time,L6_Avg_Exec_Time,L7_Avg_Exec_Time,L1_Avg_Tokens,L2_Avg_Tokens,L3_Avg_Tokens,L4_Avg_Tokens,L5_Avg_Tokens,L6_Avg_Tokens,L7_Avg_Tokens,L1_Avg_TPS,L2_Avg_TPS,L3_Avg_TPS,L4_Avg_TPS,L5_Avg_TPS,L6_Avg_TPS,L7_Avg_TPS,L1_Avg_TTFT,L2_Avg_TTFT,L3_Avg_TTFT,L4_Avg_TTFT,L5_Avg_TTFT,L6_Avg_TTFT,L7_Avg_TTFT,L1_RRR,L2_RRR,L3_RRR,L4_RRR,L5_RRR,L6_RRR,L7_RRR,L1_SR,L2_SR,L3_SR,L4_SR,L5_SR,L6_SR,L7_SR,L1_EPR_CVR,L2_EPR_CVR,L3_EPR_CVR,L4_EPR_CVR,L5_EPR_CVR,L6_EPR_CVR,L7_EPR_CVR,L1_pass@k,L2_pass@k,L3_pass@k,L4_pass@k,L5_pass@k,L6_pass@k,L7_pass@k,L1_TooAcc,L1_ArgAcc,L1_CallEM,L1_RespOK,L2_SelectAcc,L3_FSM,L3_PSM,L3_ΔSteps_norm,L3_ProvAcc,L4_Coverage,L4_SourceEPR,L5_AdaptiveRoutingScore,L5_FallbackSR,L6_ReuseRage,L6_RedundantCallRate,L6_EffScore,L7_ContextRetention,L7_RefRecall
2
+ kanana-1.5-8b-instruct-2505,Kakao,OSS,11,30,10,10,20,15,10,11,30,10,10,20,15,10,5.53,17.22,14.51,23.78,9.44,52.98,47.39,4556.36,6107.6,5723.4,7188.3,5665.9,28502.33,28738.1,823.46,354.62,394.38,302.24,599.94,538.01,606.41,1.5236,6.7827,5.9015,7.4927,1.4163,7.764,5.1605,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.8409,0.925,0.55,0.55,0.45,0.7167,0.4,1.0,1.0,1.0,0.9,0.225,1.0,0.9,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.6364,0.2727,1.0,1.0,0.0,0.5333,0.0,0.0,0.2667,0.2667,0.225,0.45,0.4,1.0,0.6,0.825,0.75
3
+ skt_A.X-4.0-Light,SKT,OSS,11,30,10,10,20,15,10,11,30,10,10,20,15,10,5.15,17.37,21.51,9.06,9.23,38.97,33.94,4286.73,7456.1,13579.8,2284.9,6500.85,27744.0,25032.0,833.07,429.13,631.27,252.27,704.42,711.88,737.55,1.3615,5.8379,6.0725,6.2881,1.3627,5.3648,3.902,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.5455,0.7417,0.525,0.35,0.2875,0.55,0.45,1.0,1.0,1.0,0.3,0.2583,0.8667,0.9,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.8182,0.4545,1.0,1.0,0.2,0.7833,0.65,0.1,0.05,0.05,0.25,0.55,0.4,1.0,0.4667,0.8,0.775
4
+ qwen3-8B,알리바바,OSS,11,30,10,10,20,15,10,11,30,10,10,20,15,10,24.54,33.11,38.89,61.09,46.28,102.03,92.19,5798.0,7600.07,8380.0,14758.8,9789.4,45946.13,55163.2,236.28,229.53,215.5,241.58,211.54,450.34,598.37,11.0876,13.3456,23.3045,16.4015,8.5784,16.7883,11.2336,1.0,1.0,0.9,0.9,1.0,1.0,1.0,0.5909,0.8083,0.175,0.35,0.45,0.7833,0.525,1.0,1.0,0.4,0.9,0.2258,1.0,0.95,1.0,1.0,0.9,0.8,0.9667,1.0,1.0,1.0,0.7955,0.4545,1.0,1.0,0.2,0.3,0.2,0.1,0.4667,0.4667,0.2333,0.55,0.2,1.0,0.5667,0.85,0.775
5
+ gemini-2.5-pro,Google,API,11,30,10,10,20,15,10,11,30,10,10,20,15,10,9.01,10.45,11.43,29.65,15.91,43.0,33.16,5257.45,5761.23,6384.2,22304.6,7592.2,54436.6,50150.6,583.2,551.49,558.73,752.35,477.25,1266.0,1512.44,4.6263,5.4812,7.9657,8.8433,4.9659,7.1894,5.2974,0.9091,0.8,0.8,1.0,0.8,0.8667,0.9,0.8409,0.6583,0.2,0.425,0.4,0.4,0.35,0.9091,0.7667,0.2,0.7,0.1583,0.8667,0.9,0.9091,0.8,0.8,1.0,0.8,0.8667,0.9,0.9091,0.6364,0.2727,0.9091,0.7667,0.1,0.1667,0.1,0.0,0.4833,0.4833,0.1583,0.35,0.5333,1.0,0.1222,0.825,0.7
6
+ Qwen3-4B-Instruct-2507,알리바바,OSS,11,30,10,10,20,15,10,11,30,10,10,20,15,10,6.66,22.89,14.8,51.19,11.71,86.63,60.09,5273.09,6447.9,9087.8,17502.5,5363.85,36058.4,37068.1,791.39,281.66,613.83,341.91,458.02,416.23,616.84,2.093,9.1244,4.4172,13.7638,1.8319,14.8681,8.245,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.6364,0.6583,0.15,0.375,0.3,0.6167,0.425,1.0,1.0,1.0,0.9,0.15,1.0,1.0,1.0,1.0,1.0,0.9333,1.0,1.0,1.0,1.0,0.75,0.3636,1.0,1.0,0.2,0.6333,0.7,0.0,0.5167,0.5167,0.15,0.3,0.1333,1.0,0.4,0.875,0.8
7
+ Midm-2.0-Base-Instruct,KT,OSS,11,30,10,10,20,15,10,11,30,10,10,20,15,10,5.39,3.9,3.06,3.75,8.13,28.66,16.08,4185.82,2514.93,3418.3,2388.8,3084.5,22909.13,14079.1,775.89,644.46,1117.59,636.3,379.51,799.33,875.38,1.4775,1.8563,1.8855,1.6781,1.0824,1.6794,1.1356,1.0,1.0,1.0,1.0,0.95,1.0,1.0,0.5909,0.5167,0.25,0.325,0.275,0.4833,0.35,0.9091,0.5667,0.2,0.3,0.0667,0.9333,0.6,1.0,1.0,1.0,0.8667,0.9833,1.0,1.0,0.9091,0.6364,0.2727,1.0,0.5667,0.0,0.1,0.0,0.0,0.0,0.0,0.0667,0.15,0.0,0.9333,0.3,0.55,0.5
components/__init__.py ADDED
File without changes
components/leaderboard_components.py ADDED
@@ -0,0 +1,467 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Reusable components for the Agent Leaderboard v2
3
+ These are stable components that don't change frequently
4
+ """
5
+
6
+ def get_chart_colors():
7
+ return {
8
+ "Private": "#1098F7", # Airglow Blue for Proprietary
9
+ "Open source": "#58BC82", # Green for Open source
10
+ "performance_bands": ["#DCFCE7", "#FEF9C3", "#FEE2E2"],
11
+ "text": "#F5F6F7",
12
+ "background": "#01091A",
13
+ "grid": (0, 0, 0, 0.1), # RGBA tuple for grid
14
+ }
15
+
16
+
17
+ def get_rank_badge(rank):
18
+ """Generate HTML for rank badge with appropriate styling"""
19
+ badge_styles = {
20
+ 1: ("1st", "linear-gradient(145deg, #ffd700, #ffc400)", "#000"),
21
+ 2: ("2nd", "linear-gradient(145deg, #9ca3af, #787C7E)", "#fff"),
22
+ 3: ("3rd", "linear-gradient(145deg, #CD7F32, #b36a1d)", "#fff"),
23
+ }
24
+
25
+ if rank in badge_styles:
26
+ label, gradient, text_color = badge_styles[rank]
27
+ return f"""
28
+ <div style="
29
+ display: inline-flex;
30
+ align-items: center;
31
+ justify-content: center;
32
+ min-width: 48px;
33
+ padding: 4px 12px;
34
+ background: {gradient};
35
+ color: {text_color};
36
+ border-radius: 6px;
37
+ font-weight: 600;
38
+ font-size: 0.9em;
39
+ box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
40
+ ">
41
+ {label}
42
+ </div>
43
+ """
44
+ return f"""
45
+ <div style="
46
+ display: inline-flex;
47
+ align-items: center;
48
+ justify-content: center;
49
+ min-width: 28px;
50
+ color: #a1a1aa;
51
+ font-weight: 500;
52
+ ">
53
+ {rank}
54
+ </div>
55
+ """
56
+
57
+
58
+ def get_type_badge(model_type):
59
+ """Generate HTML for model type badge"""
60
+ colors = get_chart_colors()
61
+ color_map = {
62
+ "Open source": colors.get("Open source", "#58BC82"),
63
+ "Proprietary": colors.get("Private", "#1098F7"),
64
+ "Private": colors.get("Private", "#1098F7"),
65
+ }
66
+ label_map = {
67
+ "Open source": "OSS",
68
+ "Proprietary": "API",
69
+ "Private": "API",
70
+ }
71
+ bg_color = color_map.get(model_type, "#4F46E5")
72
+ display_label = label_map.get(model_type, model_type)
73
+ return f"""
74
+ <div style="
75
+ display: inline-flex;
76
+ align-items: center;
77
+ padding: 4px 8px;
78
+ background: {bg_color};
79
+ color: white;
80
+ border-radius: 4px;
81
+ font-size: 0.85em;
82
+ font-weight: 500;
83
+ ">
84
+ {display_label}
85
+ </div>
86
+ """
87
+
88
+
89
+ def get_output_type_badge(output_type):
90
+ """Generate HTML for output type badge"""
91
+ if output_type == "Reasoning":
92
+ bg_color = "#9333ea" # Purple for reasoning
93
+ else:
94
+ bg_color = "#6b7280" # Gray for normal
95
+
96
+ return f"""
97
+ <div style="
98
+ display: inline-flex;
99
+ align-items: center;
100
+ gap: 4px;
101
+ padding: 4px 8px;
102
+ background: {bg_color};
103
+ color: white;
104
+ border-radius: 4px;
105
+ font-size: 0.85em;
106
+ font-weight: 500;
107
+ ">
108
+ {output_type}
109
+ </div>
110
+ """
111
+
112
+
113
+ def get_score_bar(score):
114
+ """Generate HTML for score bar with gradient styling and tooltip"""
115
+ width = score * 100
116
+ return f"""
117
+ <div style="display: flex; align-items: center; gap: 12px; width: 100%;">
118
+ <div style="
119
+ flex-grow: 1;
120
+ height: 8px;
121
+ background: rgba(245, 246, 247, 0.1);
122
+ border-radius: 4px;
123
+ overflow: hidden;
124
+ max-width: 200px;
125
+ ">
126
+ <div style="
127
+ width: {width}%;
128
+ height: 100%;
129
+ background: #ffd21e;
130
+ border-radius: 4px;
131
+ transition: width 0.3s ease;
132
+ "></div>
133
+ </div>
134
+ <span style="
135
+ font-family: 'SF Mono', monospace;
136
+ font-weight: 600;
137
+ color: #F5F6F7;
138
+ min-width: 60px;
139
+ ">{score:.3f}</span>
140
+ </div>
141
+ """
142
+
143
+
144
+ def get_metric_tooltip(metric):
145
+ """Return tooltip text for different metrics"""
146
+ tooltips = {
147
+ "Avg AC": "Action Completion (AC): Measures how well the agent accomplishes user goals and completes tasks successfully. Higher is better (0-1 scale).",
148
+ "Avg TSQ": "Tool Selection Quality (TSQ): Evaluates the accuracy of selecting the right tools and using them with correct parameters. Higher is better (0-1 scale).",
149
+ "Avg Total Cost": "Average cost per conversation session in USD, including all API calls and processing. Lower is better.",
150
+ "Avg Session Duration": "Average time taken to complete a full conversation session from start to finish, measured in seconds. Lower is generally better.",
151
+ "Avg Turns": "Average number of back-and-forth exchanges needed to complete a task. Lower typically indicates more efficient task completion.",
152
+ "Banking AC": "Action Completion score specific to banking domain tasks.",
153
+ "Banking TSQ": "Tool Selection Quality score specific to banking domain tasks.",
154
+ "Healthcare AC": "Action Completion score specific to healthcare domain tasks.",
155
+ "Healthcare TSQ": "Tool Selection Quality score specific to healthcare domain tasks.",
156
+ "Insurance AC": "Action Completion score specific to insurance domain tasks.",
157
+ "Insurance TSQ": "Tool Selection Quality score specific to insurance domain tasks.",
158
+ "Investment AC": "Action Completion score specific to investment domain tasks.",
159
+ "Investment TSQ": "Tool Selection Quality score specific to investment domain tasks.",
160
+ "Telecom AC": "Action Completion score specific to telecom domain tasks.",
161
+ "Telecom TSQ": "Tool Selection Quality score specific to telecom domain tasks.",
162
+ }
163
+ return tooltips.get(metric, "")
164
+
165
+
166
+ def get_responsive_styles():
167
+ """Return responsive CSS styles for mobile devices"""
168
+ return """
169
+ <style>
170
+ /* Enhanced mobile responsiveness */
171
+ @media (max-width: 768px) {
172
+ /* Stack grid layouts vertically on mobile */
173
+ .insight-card-grid,
174
+ .metric-card-grid {
175
+ grid-template-columns: 1fr !important;
176
+ gap: 12px !important;
177
+ }
178
+
179
+ /* Adjust table for mobile */
180
+ .v2-styled-table {
181
+ font-size: 12px !important;
182
+ }
183
+
184
+ .v2-styled-table th,
185
+ .v2-styled-table td {
186
+ padding: 8px 6px !important;
187
+ }
188
+
189
+ /* Hide less important columns on mobile */
190
+ .v2-styled-table th:nth-child(8),
191
+ .v2-styled-table td:nth-child(8),
192
+ .v2-styled-table th:nth-child(9),
193
+ .v2-styled-table td:nth-child(9) {
194
+ display: none !important;
195
+ }
196
+
197
+ /* Make score bars more compact */
198
+ .score-cell {
199
+ min-width: 120px !important;
200
+ }
201
+
202
+ /* Adjust domain selector for mobile */
203
+ .domain-radio .wrap {
204
+ flex-direction: column !important;
205
+ gap: 8px !important;
206
+ }
207
+
208
+ .domain-radio label {
209
+ min-width: 100% !important;
210
+ max-width: 100% !important;
211
+ }
212
+
213
+ /* Compact filter controls on mobile */
214
+ .compact-filter-row {
215
+ flex-direction: column !important;
216
+ }
217
+
218
+ .compact-radio .wrap > label {
219
+ font-size: 0.7rem !important;
220
+ padding: 4px 8px !important;
221
+ }
222
+
223
+ /* Adjust navigation buttons */
224
+ .nav-buttons-container {
225
+ flex-direction: column !important;
226
+ gap: 8px !important;
227
+ }
228
+
229
+ .nav-link-button {
230
+ width: 100% !important;
231
+ justify-content: center !important;
232
+ }
233
+
234
+ /* Header adjustments */
235
+ h1 {
236
+ font-size: 2rem !important;
237
+ }
238
+
239
+ h2 {
240
+ font-size: 1.5rem !important;
241
+ }
242
+
243
+ h3 {
244
+ font-size: 1.2rem !important;
245
+ }
246
+
247
+ /* Card padding adjustments */
248
+ .dark-container {
249
+ padding: 16px !important;
250
+ }
251
+
252
+ .info-box {
253
+ padding: 12px !important;
254
+ }
255
+
256
+ /* Chart container adjustments */
257
+ .chart-container {
258
+ overflow-x: auto !important;
259
+ -webkit-overflow-scrolling: touch !important;
260
+ }
261
+
262
+ /* Badge adjustments */
263
+ .badge-row {
264
+ flex-wrap: wrap !important;
265
+ }
266
+
267
+ .badge {
268
+ font-size: 0.65rem !important;
269
+ padding: 3px 8px !important;
270
+ }
271
+ }
272
+
273
+ @media (max-width: 480px) {
274
+ /* Ultra-compact layout for very small screens */
275
+ .v2-styled-table {
276
+ font-size: 10px !important;
277
+ }
278
+
279
+ /* Show only essential columns */
280
+ .v2-styled-table th:nth-child(n+6),
281
+ .v2-styled-table td:nth-child(n+6) {
282
+ display: none !important;
283
+ }
284
+
285
+ /* Keep only Rank, Model, Type, and main scores visible */
286
+ .v2-styled-table th:nth-child(5),
287
+ .v2-styled-table td:nth-child(5) {
288
+ display: table-cell !important;
289
+ }
290
+
291
+ /* Reduce all padding */
292
+ * {
293
+ padding-left: 8px !important;
294
+ padding-right: 8px !important;
295
+ }
296
+
297
+ /* Stack all buttons vertically */
298
+ .header-action-button {
299
+ width: 90% !important;
300
+ margin: 0 auto !important;
301
+ }
302
+ }
303
+
304
+ /* Tooltip improvements for mobile */
305
+ @media (hover: none) and (pointer: coarse) {
306
+ /* Show tooltips on tap for mobile */
307
+ .tooltip-trigger {
308
+ position: relative;
309
+ cursor: help;
310
+ }
311
+
312
+ .tooltip-trigger:active .tooltip-content,
313
+ .tooltip-trigger:focus .tooltip-content {
314
+ display: block !important;
315
+ }
316
+ }
317
+ </style>
318
+ """
319
+
320
+
321
+ def get_faq_section():
322
+ """Return the FAQ section HTML"""
323
+ return """
324
+ <div class="dark-container" style="margin-top: 40px; margin-bottom: 40px;">
325
+ <div class="section-header">
326
+ <span class="section-icon" style="color: var(--accent-primary);">❓</span>
327
+ <h3 style="margin: 0; color: var(--text-primary); font-size: 1.5rem; font-family: 'Geist', sans-serif; font-weight: 700;">
328
+ Frequently Asked Questions
329
+ </h3>
330
+ </div>
331
+
332
+ <div style="margin-top: 24px;">
333
+ <!-- FAQ Item 1 -->
334
+ <details class="faq-item" style="margin-bottom: 16px; background: var(--bg-secondary); border-radius: 12px; padding: 16px; border: 1px solid var(--border-subtle);">
335
+ <summary style="cursor: pointer; font-weight: 600; color: var(--text-primary); font-size: 1rem; display: flex; align-items: center; gap: 8px;">
336
+ <span style="color: var(--accent-primary);"></span> Does the methodology favor GPT-4.1 since it uses GPT-4.1 to simulate users and tools, so GPT-4.1 ranks itself highest.
337
+ </summary>
338
+ <div style="margin-top: 12px; padding-left: 28px; color: var(--text-secondary); line-height: 1.6;">
339
+ <strong style="color: var(--accent-secondary);"></strong> GPT's top ranking isn't due to simulator bias. Scenarios are pre-generated with Claude and fixed for all models. The user simulator drives goal-based conversations, and the tool simulator provides synthetic responses without influencing outcomes. Evaluation uses Claude as a judge, which should theoretically favor Claude (per sycophancy theory), but GPTs still lead.
340
+ </div>
341
+ </details>
342
+
343
+ <!-- FAQ Item 2 -->
344
+ <details class="faq-item" style="margin-bottom: 16px; background: var(--bg-secondary); border-radius: 12px; padding: 16px; border: 1px solid var(--border-subtle);">
345
+ <summary style="cursor: pointer; font-weight: 600; color: var(--text-primary); font-size: 1rem; display: flex; align-items: center; gap: 8px;">
346
+ <span style="color: var(--accent-primary);"></span> Why does a specific model rank lower when our internal results show otherwise?
347
+ </summary>
348
+ <div style="margin-top: 12px; padding-left: 28px; color: var(--text-secondary); line-height: 1.6;">
349
+ <strong style="color: var(--accent-secondary);"></strong> Performance varies by prompt, task, complexity, and domain. Our evaluations kept prompts identical across models for consistency. Different evaluation methodologies and task sets can lead to different rankings.
350
+ </div>
351
+ </details>
352
+
353
+ <!-- FAQ Item 3 -->
354
+ <details class="faq-item" style="margin-bottom: 16px; background: var(--bg-secondary); border-radius: 12px; padding: 16px; border: 1px solid var(--border-subtle);">
355
+ <summary style="cursor: pointer; font-weight: 600; color: var(--text-primary); font-size: 1rem; display: flex; align-items: center; gap: 8px;">
356
+ <span style="color: var(--accent-primary);"></span> Why is my favorite model missing?
357
+ </summary>
358
+ <div style="margin-top: 12px; padding-left: 28px; color: var(--text-secondary); line-height: 1.6;">
359
+ <strong style="color: var(--accent-secondary);"></strong> We were not able to add certain models either because they were not in our initial list or had issues while running the experiments, such as improper tool call output format. We skipped some of the models which performed poorly in our leaderboard v1.
360
+ </div>
361
+ </details>
362
+
363
+ <!-- FAQ Item 4 -->
364
+ <details class="faq-item" style="margin-bottom: 16px; background: var(--bg-secondary); border-radius: 12px; padding: 16px; border: 1px solid var(--border-subtle);">
365
+ <summary style="cursor: pointer; font-weight: 600; color: var(--text-primary); font-size: 1rem; display: flex; align-items: center; gap: 8px;">
366
+ <span style="color: var(--accent-primary);"></span> We were surprised Gemini 2.5 Pro ranked lower. Our internal benchmarks show it's excellent for code research and AI code review tasks.
367
+ </summary>
368
+ <div style="margin-top: 12px; padding-left: 28px; color: var(--text-secondary); line-height: 1.6;">
369
+ <strong style="color: var(--accent-secondary);"></strong> Results differ because this leaderboard evaluates support agent scenarios only, not coding ones. Different models excel at different types of tasks, and this benchmark focuses specifically on business support agent use cases across banking, healthcare, insurance, investment, and telecom domains.
370
+ </div>
371
+ </details>
372
+
373
+ <!-- About Metrics -->
374
+ <div style="margin-top: 32px; padding: 20px; background: #ffd21e0d; border-radius: 12px; border: 1px solid var(--border-default);">
375
+ <h4 style="color: var(--text-primary); margin-top: 0; margin-bottom: 16px; font-size: 1.2rem; font-family: 'Geist', sans-serif; font-weight: 600; display: flex; align-items: center; gap: 8px;">
376
+ <span style="font-size: 1.3rem;">📊</span>
377
+ Understanding the Metrics
378
+ </h4>
379
+
380
+ <div style="display: grid; gap: 16px;">
381
+ <div>
382
+ <h5 style="color: var(--accent-primary); margin: 0 0 8px 0; font-size: 1rem;">Action Completion (AC)</h5>
383
+ <p style="color: var(--text-secondary); margin: 0; line-height: 1.5;">
384
+ A score from 0 to 1 measuring how successfully the agent completes the user's requested tasks. This evaluates whether the agent achieves the intended goals, follows instructions accurately, and provides complete solutions. Higher scores indicate better task completion.
385
+ </p>
386
+ </div>
387
+
388
+ <div>
389
+ <h5 style="color: var(--accent-primary); margin: 0 0 8px 0; font-size: 1rem;">Tool Selection Quality (TSQ)</h5>
390
+ <p style="color: var(--text-secondary); margin: 0; line-height: 1.5;">
391
+ A score from 0 to 1 evaluating how well the agent selects and uses the appropriate tools for each task. This includes choosing the right tool, using correct parameters, and proper sequencing of tool calls. Higher scores indicate better tool utilization.
392
+ </p>
393
+ </div>
394
+
395
+ <div>
396
+ <h5 style="color: var(--accent-primary); margin: 0 0 8px 0; font-size: 1rem;">Domain-Specific Performance</h5>
397
+ <p style="color: var(--text-secondary); margin: 0; line-height: 1.5;">
398
+ Models are tested across five business domains: Banking, Healthcare, Insurance, Investment, and Telecom. Each domain has specific scenarios and requirements that test the agent's ability to handle industry-specific tasks and terminology.
399
+ </p>
400
+ </div>
401
+
402
+ <div>
403
+ <h5 style="color: var(--accent-primary); margin: 0 0 8px 0; font-size: 1rem;">Efficiency Metrics</h5>
404
+ <p style="color: var(--text-secondary); margin: 0; line-height: 1.5;">
405
+ • <strong>Cost:</strong> Total API cost per session in USD<br>
406
+ • <strong>Duration:</strong> Time to complete tasks in seconds<br>
407
+ • <strong>Turns:</strong> Number of exchanges to reach resolution<br>
408
+ These metrics help identify the most cost-effective and efficient models for production use.
409
+ </p>
410
+ </div>
411
+ </div>
412
+
413
+ <div style="margin-top: 20px; padding-top: 16px; border-top: 1px solid var(--border-subtle);">
414
+ <p style="color: var(--text-secondary); margin: 0; font-size: 0.9rem; line-height: 1.5;">
415
+ <strong>Learn More:</strong> For detailed methodology and evaluation criteria, visit the
416
+ <a href="https://galileo.ai/blog/agent-leaderboard-v2" target="_blank" style="color: var(--accent-primary); text-decoration: none;">
417
+ official blog post ↗
418
+ </a>
419
+ or explore the
420
+ <a href="https://github.com/rungalileo/agent-leaderboard" target="_blank" style="color: var(--accent-primary); text-decoration: none;">
421
+ GitHub repository ↗
422
+ </a>
423
+ </p>
424
+ </div>
425
+ </div>
426
+ </div>
427
+
428
+ <style>
429
+ .faq-item {
430
+ transition: all 0.3s ease;
431
+ }
432
+
433
+ .faq-item:hover {
434
+ border-color: var(--accent-primary) !important;
435
+ box-shadow: 0 4px 12px rgba(255, 210, 30, 0.1);
436
+ }
437
+
438
+ .faq-item summary::-webkit-details-marker {
439
+ display: none;
440
+ }
441
+
442
+ .faq-item summary::before {
443
+ content: '▶';
444
+ display: inline-block;
445
+ margin-right: 8px;
446
+ transition: transform 0.3s ease;
447
+ color: var(--accent-secondary);
448
+ }
449
+
450
+ .faq-item[open] summary::before {
451
+ transform: rotate(90deg);
452
+ }
453
+
454
+ .faq-item summary:hover {
455
+ color: var(--accent-primary) !important;
456
+ }
457
+ </style>
458
+ </div>
459
+ """
460
+
461
+
462
+ # Column mapping for sorting
463
+ SORT_COLUMN_MAP = {
464
+ "Avg Action Completion": "Avg AC",
465
+ "Avg Tool Selection Quality": "Avg TSQ",
466
+ "Avg Session Cost": "Avg Total Cost",
467
+ }
krew_icon.png ADDED

Git LFS Details

  • SHA256: 4c9becd50dd14f62a7889c666f5e475921e04d11d71f6c65cfbb5b40560261ba
  • Pointer size: 132 Bytes
  • Size of remote file: 1.04 MB
pyproject.toml DELETED
@@ -1,13 +0,0 @@
1
- [tool.ruff]
2
- # Enable pycodestyle (`E`) and Pyflakes (`F`) codes by default.
3
- select = ["E", "F"]
4
- ignore = ["E501"] # line too long (black is taking care of this)
5
- line-length = 119
6
- fixable = ["A", "B", "C", "D", "E", "F", "G", "I", "N", "Q", "S", "T", "W", "ANN", "ARG", "BLE", "COM", "DJ", "DTZ", "EM", "ERA", "EXE", "FBT", "ICN", "INP", "ISC", "NPY", "PD", "PGH", "PIE", "PL", "PT", "PTH", "PYI", "RET", "RSE", "RUF", "SIM", "SLF", "TCH", "TID", "TRY", "UP", "YTT"]
7
-
8
- [tool.isort]
9
- profile = "black"
10
- line_length = 119
11
-
12
- [tool.black]
13
- line-length = 119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
requirements.txt CHANGED
@@ -1,16 +1,5 @@
1
- APScheduler
2
- black
3
- datasets
4
- gradio
5
- gradio[oauth]
6
- gradio_leaderboard==0.0.13
7
- gradio_client
8
- huggingface-hub>=0.18.0
9
- matplotlib
10
- numpy
11
  pandas
12
- python-dateutil
13
- tqdm
14
- transformers
15
- tokenizers>=0.15.0
16
- sentencepiece
 
1
+ gradio==5.35.0
 
 
 
 
 
 
 
 
 
2
  pandas
3
+ matplotlib
4
+ plotly==5.24.1
5
+ pydantic==2.10.6
 
 
src/about.py DELETED
@@ -1,72 +0,0 @@
1
- from dataclasses import dataclass
2
- from enum import Enum
3
-
4
- @dataclass
5
- class Task:
6
- benchmark: str
7
- metric: str
8
- col_name: str
9
-
10
-
11
- # Select your tasks here
12
- # ---------------------------------------------------
13
- class Tasks(Enum):
14
- # task_key in the json file, metric_key in the json file, name to display in the leaderboard
15
- task0 = Task("anli_r1", "acc", "ANLI")
16
- task1 = Task("logiqa", "acc_norm", "LogiQA")
17
-
18
- NUM_FEWSHOT = 0 # Change with your few shot
19
- # ---------------------------------------------------
20
-
21
-
22
-
23
- # Your leaderboard name
24
- TITLE = """<h1 align="center" id="space-title">Demo leaderboard</h1>"""
25
-
26
- # What does your leaderboard evaluate?
27
- INTRODUCTION_TEXT = """
28
- Intro text
29
- """
30
-
31
- # Which evaluations are you running? how can people reproduce what you have?
32
- LLM_BENCHMARKS_TEXT = f"""
33
- ## How it works
34
-
35
- ## Reproducibility
36
- To reproduce our results, here is the commands you can run:
37
-
38
- """
39
-
40
- EVALUATION_QUEUE_TEXT = """
41
- ## Some good practices before submitting a model
42
-
43
- ### 1) Make sure you can load your model and tokenizer using AutoClasses:
44
- ```python
45
- from transformers import AutoConfig, AutoModel, AutoTokenizer
46
- config = AutoConfig.from_pretrained("your model name", revision=revision)
47
- model = AutoModel.from_pretrained("your model name", revision=revision)
48
- tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
49
- ```
50
- If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.
51
-
52
- Note: make sure your model is public!
53
- Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!
54
-
55
- ### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
56
- It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!
57
-
58
- ### 3) Make sure your model has an open license!
59
- This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗
60
-
61
- ### 4) Fill up your model card
62
- When we add extra information about models to the leaderboard, it will be automatically taken from the model card
63
-
64
- ## In case of model failure
65
- If your model is displayed in the `FAILED` category, its execution stopped.
66
- Make sure you have followed the above steps first.
67
- If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task).
68
- """
69
-
70
- CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
71
- CITATION_BUTTON_TEXT = r"""
72
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/display/css_html_js.py DELETED
@@ -1,105 +0,0 @@
1
- custom_css = """
2
-
3
- .markdown-text {
4
- font-size: 16px !important;
5
- }
6
-
7
- #models-to-add-text {
8
- font-size: 18px !important;
9
- }
10
-
11
- #citation-button span {
12
- font-size: 16px !important;
13
- }
14
-
15
- #citation-button textarea {
16
- font-size: 16px !important;
17
- }
18
-
19
- #citation-button > label > button {
20
- margin: 6px;
21
- transform: scale(1.3);
22
- }
23
-
24
- #leaderboard-table {
25
- margin-top: 15px
26
- }
27
-
28
- #leaderboard-table-lite {
29
- margin-top: 15px
30
- }
31
-
32
- #search-bar-table-box > div:first-child {
33
- background: none;
34
- border: none;
35
- }
36
-
37
- #search-bar {
38
- padding: 0px;
39
- }
40
-
41
- /* Limit the width of the first AutoEvalColumn so that names don't expand too much */
42
- #leaderboard-table td:nth-child(2),
43
- #leaderboard-table th:nth-child(2) {
44
- max-width: 400px;
45
- overflow: auto;
46
- white-space: nowrap;
47
- }
48
-
49
- .tab-buttons button {
50
- font-size: 20px;
51
- }
52
-
53
- #scale-logo {
54
- border-style: none !important;
55
- box-shadow: none;
56
- display: block;
57
- margin-left: auto;
58
- margin-right: auto;
59
- max-width: 600px;
60
- }
61
-
62
- #scale-logo .download {
63
- display: none;
64
- }
65
- #filter_type{
66
- border: 0;
67
- padding-left: 0;
68
- padding-top: 0;
69
- }
70
- #filter_type label {
71
- display: flex;
72
- }
73
- #filter_type label > span{
74
- margin-top: var(--spacing-lg);
75
- margin-right: 0.5em;
76
- }
77
- #filter_type label > .wrap{
78
- width: 103px;
79
- }
80
- #filter_type label > .wrap .wrap-inner{
81
- padding: 2px;
82
- }
83
- #filter_type label > .wrap .wrap-inner input{
84
- width: 1px
85
- }
86
- #filter-columns-type{
87
- border:0;
88
- padding:0.5;
89
- }
90
- #filter-columns-size{
91
- border:0;
92
- padding:0.5;
93
- }
94
- #box-filter > .form{
95
- border: 0
96
- }
97
- """
98
-
99
- get_window_url_params = """
100
- function(url_params) {
101
- const params = new URLSearchParams(window.location.search);
102
- url_params = Object.fromEntries(params);
103
- return url_params;
104
- }
105
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/display/formatting.py DELETED
@@ -1,27 +0,0 @@
1
- def model_hyperlink(link, model_name):
2
- return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
3
-
4
-
5
- def make_clickable_model(model_name):
6
- link = f"https://huggingface.co/{model_name}"
7
- return model_hyperlink(link, model_name)
8
-
9
-
10
- def styled_error(error):
11
- return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
12
-
13
-
14
- def styled_warning(warn):
15
- return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
16
-
17
-
18
- def styled_message(message):
19
- return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
20
-
21
-
22
- def has_no_nan_values(df, columns):
23
- return df[columns].notna().all(axis=1)
24
-
25
-
26
- def has_nan_values(df, columns):
27
- return df[columns].isna().any(axis=1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/display/utils.py DELETED
@@ -1,110 +0,0 @@
1
- from dataclasses import dataclass, make_dataclass
2
- from enum import Enum
3
-
4
- import pandas as pd
5
-
6
- from src.about import Tasks
7
-
8
- def fields(raw_class):
9
- return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
10
-
11
-
12
- # These classes are for user facing column names,
13
- # to avoid having to change them all around the code
14
- # when a modif is needed
15
- @dataclass
16
- class ColumnContent:
17
- name: str
18
- type: str
19
- displayed_by_default: bool
20
- hidden: bool = False
21
- never_hidden: bool = False
22
-
23
- ## Leaderboard columns
24
- auto_eval_column_dict = []
25
- # Init
26
- auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
27
- auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
28
- #Scores
29
- auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
30
- for task in Tasks:
31
- auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
32
- # Model information
33
- auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
34
- auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
35
- auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
36
- auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
37
- auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
38
- auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
39
- auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
40
- auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
41
- auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
42
-
43
- # We use make dataclass to dynamically fill the scores from Tasks
44
- AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
45
-
46
- ## For the queue columns in the submission tab
47
- @dataclass(frozen=True)
48
- class EvalQueueColumn: # Queue column
49
- model = ColumnContent("model", "markdown", True)
50
- revision = ColumnContent("revision", "str", True)
51
- private = ColumnContent("private", "bool", True)
52
- precision = ColumnContent("precision", "str", True)
53
- weight_type = ColumnContent("weight_type", "str", "Original")
54
- status = ColumnContent("status", "str", True)
55
-
56
- ## All the model information that we might need
57
- @dataclass
58
- class ModelDetails:
59
- name: str
60
- display_name: str = ""
61
- symbol: str = "" # emoji
62
-
63
-
64
- class ModelType(Enum):
65
- PT = ModelDetails(name="pretrained", symbol="🟢")
66
- FT = ModelDetails(name="fine-tuned", symbol="🔶")
67
- IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
68
- RL = ModelDetails(name="RL-tuned", symbol="🟦")
69
- Unknown = ModelDetails(name="", symbol="?")
70
-
71
- def to_str(self, separator=" "):
72
- return f"{self.value.symbol}{separator}{self.value.name}"
73
-
74
- @staticmethod
75
- def from_str(type):
76
- if "fine-tuned" in type or "🔶" in type:
77
- return ModelType.FT
78
- if "pretrained" in type or "🟢" in type:
79
- return ModelType.PT
80
- if "RL-tuned" in type or "🟦" in type:
81
- return ModelType.RL
82
- if "instruction-tuned" in type or "⭕" in type:
83
- return ModelType.IFT
84
- return ModelType.Unknown
85
-
86
- class WeightType(Enum):
87
- Adapter = ModelDetails("Adapter")
88
- Original = ModelDetails("Original")
89
- Delta = ModelDetails("Delta")
90
-
91
- class Precision(Enum):
92
- float16 = ModelDetails("float16")
93
- bfloat16 = ModelDetails("bfloat16")
94
- Unknown = ModelDetails("?")
95
-
96
- def from_str(precision):
97
- if precision in ["torch.float16", "float16"]:
98
- return Precision.float16
99
- if precision in ["torch.bfloat16", "bfloat16"]:
100
- return Precision.bfloat16
101
- return Precision.Unknown
102
-
103
- # Column selection
104
- COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
105
-
106
- EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
107
- EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
108
-
109
- BENCHMARK_COLS = [t.value.col_name for t in Tasks]
110
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/envs.py DELETED
@@ -1,25 +0,0 @@
1
- import os
2
-
3
- from huggingface_hub import HfApi
4
-
5
- # Info to change for your repository
6
- # ----------------------------------
7
- TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
8
-
9
- OWNER = "demo-leaderboard-backend" # Change to your org - don't forget to create a results and request dataset, with the correct format!
10
- # ----------------------------------
11
-
12
- REPO_ID = f"{OWNER}/leaderboard"
13
- QUEUE_REPO = f"{OWNER}/requests"
14
- RESULTS_REPO = f"{OWNER}/results"
15
-
16
- # If you setup a cache later, just change HF_HOME
17
- CACHE_PATH=os.getenv("HF_HOME", ".")
18
-
19
- # Local caches
20
- EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
21
- EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
22
- EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
23
- EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
24
-
25
- API = HfApi(token=TOKEN)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/leaderboard/read_evals.py DELETED
@@ -1,196 +0,0 @@
1
- import glob
2
- import json
3
- import math
4
- import os
5
- from dataclasses import dataclass
6
-
7
- import dateutil
8
- import numpy as np
9
-
10
- from src.display.formatting import make_clickable_model
11
- from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
12
- from src.submission.check_validity import is_model_on_hub
13
-
14
-
15
- @dataclass
16
- class EvalResult:
17
- """Represents one full evaluation. Built from a combination of the result and request file for a given run.
18
- """
19
- eval_name: str # org_model_precision (uid)
20
- full_model: str # org/model (path on hub)
21
- org: str
22
- model: str
23
- revision: str # commit hash, "" if main
24
- results: dict
25
- precision: Precision = Precision.Unknown
26
- model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
27
- weight_type: WeightType = WeightType.Original # Original or Adapter
28
- architecture: str = "Unknown"
29
- license: str = "?"
30
- likes: int = 0
31
- num_params: int = 0
32
- date: str = "" # submission date of request file
33
- still_on_hub: bool = False
34
-
35
- @classmethod
36
- def init_from_json_file(self, json_filepath):
37
- """Inits the result from the specific model result file"""
38
- with open(json_filepath) as fp:
39
- data = json.load(fp)
40
-
41
- config = data.get("config")
42
-
43
- # Precision
44
- precision = Precision.from_str(config.get("model_dtype"))
45
-
46
- # Get model and org
47
- org_and_model = config.get("model_name", config.get("model_args", None))
48
- org_and_model = org_and_model.split("/", 1)
49
-
50
- if len(org_and_model) == 1:
51
- org = None
52
- model = org_and_model[0]
53
- result_key = f"{model}_{precision.value.name}"
54
- else:
55
- org = org_and_model[0]
56
- model = org_and_model[1]
57
- result_key = f"{org}_{model}_{precision.value.name}"
58
- full_model = "/".join(org_and_model)
59
-
60
- still_on_hub, _, model_config = is_model_on_hub(
61
- full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
62
- )
63
- architecture = "?"
64
- if model_config is not None:
65
- architectures = getattr(model_config, "architectures", None)
66
- if architectures:
67
- architecture = ";".join(architectures)
68
-
69
- # Extract results available in this file (some results are split in several files)
70
- results = {}
71
- for task in Tasks:
72
- task = task.value
73
-
74
- # We average all scores of a given metric (not all metrics are present in all files)
75
- accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
76
- if accs.size == 0 or any([acc is None for acc in accs]):
77
- continue
78
-
79
- mean_acc = np.mean(accs) * 100.0
80
- results[task.benchmark] = mean_acc
81
-
82
- return self(
83
- eval_name=result_key,
84
- full_model=full_model,
85
- org=org,
86
- model=model,
87
- results=results,
88
- precision=precision,
89
- revision= config.get("model_sha", ""),
90
- still_on_hub=still_on_hub,
91
- architecture=architecture
92
- )
93
-
94
- def update_with_request_file(self, requests_path):
95
- """Finds the relevant request file for the current model and updates info with it"""
96
- request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
97
-
98
- try:
99
- with open(request_file, "r") as f:
100
- request = json.load(f)
101
- self.model_type = ModelType.from_str(request.get("model_type", ""))
102
- self.weight_type = WeightType[request.get("weight_type", "Original")]
103
- self.license = request.get("license", "?")
104
- self.likes = request.get("likes", 0)
105
- self.num_params = request.get("params", 0)
106
- self.date = request.get("submitted_time", "")
107
- except Exception:
108
- print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
109
-
110
- def to_dict(self):
111
- """Converts the Eval Result to a dict compatible with our dataframe display"""
112
- average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
113
- data_dict = {
114
- "eval_name": self.eval_name, # not a column, just a save name,
115
- AutoEvalColumn.precision.name: self.precision.value.name,
116
- AutoEvalColumn.model_type.name: self.model_type.value.name,
117
- AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
118
- AutoEvalColumn.weight_type.name: self.weight_type.value.name,
119
- AutoEvalColumn.architecture.name: self.architecture,
120
- AutoEvalColumn.model.name: make_clickable_model(self.full_model),
121
- AutoEvalColumn.revision.name: self.revision,
122
- AutoEvalColumn.average.name: average,
123
- AutoEvalColumn.license.name: self.license,
124
- AutoEvalColumn.likes.name: self.likes,
125
- AutoEvalColumn.params.name: self.num_params,
126
- AutoEvalColumn.still_on_hub.name: self.still_on_hub,
127
- }
128
-
129
- for task in Tasks:
130
- data_dict[task.value.col_name] = self.results[task.value.benchmark]
131
-
132
- return data_dict
133
-
134
-
135
- def get_request_file_for_model(requests_path, model_name, precision):
136
- """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
137
- request_files = os.path.join(
138
- requests_path,
139
- f"{model_name}_eval_request_*.json",
140
- )
141
- request_files = glob.glob(request_files)
142
-
143
- # Select correct request file (precision)
144
- request_file = ""
145
- request_files = sorted(request_files, reverse=True)
146
- for tmp_request_file in request_files:
147
- with open(tmp_request_file, "r") as f:
148
- req_content = json.load(f)
149
- if (
150
- req_content["status"] in ["FINISHED"]
151
- and req_content["precision"] == precision.split(".")[-1]
152
- ):
153
- request_file = tmp_request_file
154
- return request_file
155
-
156
-
157
- def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
158
- """From the path of the results folder root, extract all needed info for results"""
159
- model_result_filepaths = []
160
-
161
- for root, _, files in os.walk(results_path):
162
- # We should only have json files in model results
163
- if len(files) == 0 or any([not f.endswith(".json") for f in files]):
164
- continue
165
-
166
- # Sort the files by date
167
- try:
168
- files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
169
- except dateutil.parser._parser.ParserError:
170
- files = [files[-1]]
171
-
172
- for file in files:
173
- model_result_filepaths.append(os.path.join(root, file))
174
-
175
- eval_results = {}
176
- for model_result_filepath in model_result_filepaths:
177
- # Creation of result
178
- eval_result = EvalResult.init_from_json_file(model_result_filepath)
179
- eval_result.update_with_request_file(requests_path)
180
-
181
- # Store results of same eval together
182
- eval_name = eval_result.eval_name
183
- if eval_name in eval_results.keys():
184
- eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
185
- else:
186
- eval_results[eval_name] = eval_result
187
-
188
- results = []
189
- for v in eval_results.values():
190
- try:
191
- v.to_dict() # we test if the dict version is complete
192
- results.append(v)
193
- except KeyError: # not all eval values present
194
- continue
195
-
196
- return results
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/populate.py DELETED
@@ -1,58 +0,0 @@
1
- import json
2
- import os
3
-
4
- import pandas as pd
5
-
6
- from src.display.formatting import has_no_nan_values, make_clickable_model
7
- from src.display.utils import AutoEvalColumn, EvalQueueColumn
8
- from src.leaderboard.read_evals import get_raw_eval_results
9
-
10
-
11
- def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
12
- """Creates a dataframe from all the individual experiment results"""
13
- raw_data = get_raw_eval_results(results_path, requests_path)
14
- all_data_json = [v.to_dict() for v in raw_data]
15
-
16
- df = pd.DataFrame.from_records(all_data_json)
17
- df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
18
- df = df[cols].round(decimals=2)
19
-
20
- # filter out if any of the benchmarks have not been produced
21
- df = df[has_no_nan_values(df, benchmark_cols)]
22
- return df
23
-
24
-
25
- def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
26
- """Creates the different dataframes for the evaluation queues requestes"""
27
- entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
28
- all_evals = []
29
-
30
- for entry in entries:
31
- if ".json" in entry:
32
- file_path = os.path.join(save_path, entry)
33
- with open(file_path) as fp:
34
- data = json.load(fp)
35
-
36
- data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
37
- data[EvalQueueColumn.revision.name] = data.get("revision", "main")
38
-
39
- all_evals.append(data)
40
- elif ".md" not in entry:
41
- # this is a folder
42
- sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")]
43
- for sub_entry in sub_entries:
44
- file_path = os.path.join(save_path, entry, sub_entry)
45
- with open(file_path) as fp:
46
- data = json.load(fp)
47
-
48
- data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
49
- data[EvalQueueColumn.revision.name] = data.get("revision", "main")
50
- all_evals.append(data)
51
-
52
- pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
53
- running_list = [e for e in all_evals if e["status"] == "RUNNING"]
54
- finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
55
- df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
56
- df_running = pd.DataFrame.from_records(running_list, columns=cols)
57
- df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
58
- return df_finished[cols], df_running[cols], df_pending[cols]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/submission/check_validity.py DELETED
@@ -1,99 +0,0 @@
1
- import json
2
- import os
3
- import re
4
- from collections import defaultdict
5
- from datetime import datetime, timedelta, timezone
6
-
7
- import huggingface_hub
8
- from huggingface_hub import ModelCard
9
- from huggingface_hub.hf_api import ModelInfo
10
- from transformers import AutoConfig
11
- from transformers.models.auto.tokenization_auto import AutoTokenizer
12
-
13
- def check_model_card(repo_id: str) -> tuple[bool, str]:
14
- """Checks if the model card and license exist and have been filled"""
15
- try:
16
- card = ModelCard.load(repo_id)
17
- except huggingface_hub.utils.EntryNotFoundError:
18
- return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
19
-
20
- # Enforce license metadata
21
- if card.data.license is None:
22
- if not ("license_name" in card.data and "license_link" in card.data):
23
- return False, (
24
- "License not found. Please add a license to your model card using the `license` metadata or a"
25
- " `license_name`/`license_link` pair."
26
- )
27
-
28
- # Enforce card content
29
- if len(card.text) < 200:
30
- return False, "Please add a description to your model card, it is too short."
31
-
32
- return True, ""
33
-
34
- def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
35
- """Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
36
- try:
37
- config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
38
- if test_tokenizer:
39
- try:
40
- tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
41
- except ValueError as e:
42
- return (
43
- False,
44
- f"uses a tokenizer which is not in a transformers release: {e}",
45
- None
46
- )
47
- except Exception as e:
48
- return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
49
- return True, None, config
50
-
51
- except ValueError:
52
- return (
53
- False,
54
- "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
55
- None
56
- )
57
-
58
- except Exception as e:
59
- return False, "was not found on hub!", None
60
-
61
-
62
- def get_model_size(model_info: ModelInfo, precision: str):
63
- """Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
64
- try:
65
- model_size = round(model_info.safetensors["total"] / 1e9, 3)
66
- except (AttributeError, TypeError):
67
- return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
68
-
69
- size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
70
- model_size = size_factor * model_size
71
- return model_size
72
-
73
- def get_model_arch(model_info: ModelInfo):
74
- """Gets the model architecture from the configuration"""
75
- return model_info.config.get("architectures", "Unknown")
76
-
77
- def already_submitted_models(requested_models_dir: str) -> set[str]:
78
- """Gather a list of already submitted models to avoid duplicates"""
79
- depth = 1
80
- file_names = []
81
- users_to_submission_dates = defaultdict(list)
82
-
83
- for root, _, files in os.walk(requested_models_dir):
84
- current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
85
- if current_depth == depth:
86
- for file in files:
87
- if not file.endswith(".json"):
88
- continue
89
- with open(os.path.join(root, file), "r") as f:
90
- info = json.load(f)
91
- file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
92
-
93
- # Select organisation
94
- if info["model"].count("/") == 0 or "submitted_time" not in info:
95
- continue
96
- organisation, _ = info["model"].split("/")
97
- users_to_submission_dates[organisation].append(info["submitted_time"])
98
-
99
- return set(file_names), users_to_submission_dates
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/submission/submit.py DELETED
@@ -1,119 +0,0 @@
1
- import json
2
- import os
3
- from datetime import datetime, timezone
4
-
5
- from src.display.formatting import styled_error, styled_message, styled_warning
6
- from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
7
- from src.submission.check_validity import (
8
- already_submitted_models,
9
- check_model_card,
10
- get_model_size,
11
- is_model_on_hub,
12
- )
13
-
14
- REQUESTED_MODELS = None
15
- USERS_TO_SUBMISSION_DATES = None
16
-
17
- def add_new_eval(
18
- model: str,
19
- base_model: str,
20
- revision: str,
21
- precision: str,
22
- weight_type: str,
23
- model_type: str,
24
- ):
25
- global REQUESTED_MODELS
26
- global USERS_TO_SUBMISSION_DATES
27
- if not REQUESTED_MODELS:
28
- REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
29
-
30
- user_name = ""
31
- model_path = model
32
- if "/" in model:
33
- user_name = model.split("/")[0]
34
- model_path = model.split("/")[1]
35
-
36
- precision = precision.split(" ")[0]
37
- current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
38
-
39
- if model_type is None or model_type == "":
40
- return styled_error("Please select a model type.")
41
-
42
- # Does the model actually exist?
43
- if revision == "":
44
- revision = "main"
45
-
46
- # Is the model on the hub?
47
- if weight_type in ["Delta", "Adapter"]:
48
- base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
49
- if not base_model_on_hub:
50
- return styled_error(f'Base model "{base_model}" {error}')
51
-
52
- if not weight_type == "Adapter":
53
- model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
54
- if not model_on_hub:
55
- return styled_error(f'Model "{model}" {error}')
56
-
57
- # Is the model info correctly filled?
58
- try:
59
- model_info = API.model_info(repo_id=model, revision=revision)
60
- except Exception:
61
- return styled_error("Could not get your model information. Please fill it up properly.")
62
-
63
- model_size = get_model_size(model_info=model_info, precision=precision)
64
-
65
- # Were the model card and license filled?
66
- try:
67
- license = model_info.cardData["license"]
68
- except Exception:
69
- return styled_error("Please select a license for your model")
70
-
71
- modelcard_OK, error_msg = check_model_card(model)
72
- if not modelcard_OK:
73
- return styled_error(error_msg)
74
-
75
- # Seems good, creating the eval
76
- print("Adding new eval")
77
-
78
- eval_entry = {
79
- "model": model,
80
- "base_model": base_model,
81
- "revision": revision,
82
- "precision": precision,
83
- "weight_type": weight_type,
84
- "status": "PENDING",
85
- "submitted_time": current_time,
86
- "model_type": model_type,
87
- "likes": model_info.likes,
88
- "params": model_size,
89
- "license": license,
90
- "private": False,
91
- }
92
-
93
- # Check for duplicate submission
94
- if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
95
- return styled_warning("This model has been already submitted.")
96
-
97
- print("Creating eval file")
98
- OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
99
- os.makedirs(OUT_DIR, exist_ok=True)
100
- out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
101
-
102
- with open(out_path, "w") as f:
103
- f.write(json.dumps(eval_entry))
104
-
105
- print("Uploading eval file")
106
- API.upload_file(
107
- path_or_fileobj=out_path,
108
- path_in_repo=out_path.split("eval-queue/")[1],
109
- repo_id=QUEUE_REPO,
110
- repo_type="dataset",
111
- commit_message=f"Add {model} to eval queue",
112
- )
113
-
114
- # Remove the local file
115
- os.remove(out_path)
116
-
117
- return styled_message(
118
- "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
119
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
styles/__init__.py ADDED
File without changes
styles/leaderboard_styles.py ADDED
@@ -0,0 +1,397 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ CSS styles for the Agent Leaderboard v2
3
+ This file contains all the styling that doesn't change frequently
4
+ """
5
+
6
+ def get_leaderboard_css():
7
+ """Return the complete CSS for the leaderboard"""
8
+ return """
9
+ <style>
10
+ /* Import Geist fonts */
11
+ @import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600;700&display=swap');
12
+
13
+ @font-face {
14
+ font-family: 'Geist';
15
+ src: url('https://raw.githubusercontent.com/vercel/geist-font/main/packages/next/dist/fonts/geist-sans/Geist-Variable.woff2') format('woff2');
16
+ font-weight: 100 900;
17
+ font-style: normal;
18
+ }
19
+
20
+ @font-face {
21
+ font-family: 'Geist Mono';
22
+ src: url('https://raw.githubusercontent.com/vercel/geist-font/main/packages/next/dist/fonts/geist-mono/GeistMono-Variable.woff2') format('woff2');
23
+ font-weight: 100 900;
24
+ font-style: normal;
25
+ }
26
+
27
+ /* Root variables for enhanced color scheme */
28
+ :root {
29
+ --bg-primary: #01091A;
30
+ --bg-secondary: rgba(245, 246, 247, 0.03);
31
+ --bg-card: rgba(245, 246, 247, 0.02);
32
+ --border-subtle: rgba(245, 246, 247, 0.08);
33
+ --border-default: rgba(245, 246, 247, 0.12);
34
+ --border-strong: rgba(245, 246, 247, 0.2);
35
+ --text-primary: #F5F6F7;
36
+ --text-secondary: #94A3B8;
37
+ --text-muted: #64748B;
38
+ --accent-primary: #ffd21e;
39
+ --accent-secondary: #1098F7;
40
+ --accent-tertiary: #F5F6F7;
41
+ --glow-primary: rgba(255, 210, 30, 0.4);
42
+ --glow-secondary: rgba(16, 152, 247, 0.4);
43
+ --glow-tertiary: rgba(245, 246, 247, 0.3);
44
+ }
45
+
46
+ /* Global font and background */
47
+ .gradio-container {
48
+ font-family: 'Geist', -apple-system, BlinkMacSystemFont, 'Inter', sans-serif !important;
49
+ background: var(--bg-primary) !important;
50
+ color: var(--text-primary) !important;
51
+ }
52
+
53
+ /* Headers and text */
54
+ h1, h2, h3, h4 {
55
+ color: var(--text-primary) !important;
56
+ font-weight: 700 !important;
57
+ font-family: 'Geist', -apple-system, BlinkMacSystemFont, sans-serif !important;
58
+ }
59
+
60
+ p, span, div {
61
+ color: var(--text-primary) !important;
62
+ font-family: 'Geist', -apple-system, BlinkMacSystemFont, sans-serif !important;
63
+ }
64
+
65
+ /* Labels and info text */
66
+ label {
67
+ color: var(--text-primary) !important;
68
+ font-family: 'Geist', -apple-system, BlinkMacSystemFont, sans-serif !important;
69
+ }
70
+
71
+ .gr-box label {
72
+ color: var(--text-primary) !important;
73
+ font-family: 'Geist', -apple-system, BlinkMacSystemFont, sans-serif !important;
74
+ }
75
+
76
+ .gr-info {
77
+ color: var(--text-secondary) !important;
78
+ font-family: 'Geist', -apple-system, BlinkMacSystemFont, sans-serif !important;
79
+ }
80
+
81
+ /* Simple metric cards */
82
+ .metric-card {
83
+ background: var(--bg-card);
84
+ border-radius: 16px;
85
+ padding: 24px;
86
+ position: relative;
87
+ border: 1px solid var(--border-subtle);
88
+ transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1);
89
+ }
90
+
91
+ .metric-card:hover {
92
+ transform: translateY(-4px);
93
+ border-color: var(--accent-primary);
94
+ box-shadow: 0 8px 24px rgba(255, 210, 30, 0.2);
95
+ }
96
+
97
+ /* Metric icon with glow effect */
98
+ .metric-icon {
99
+ width: 48px;
100
+ height: 48px;
101
+ display: flex;
102
+ align-items: center;
103
+ justify-content: center;
104
+ font-size: 2rem;
105
+ margin-bottom: 16px;
106
+ filter: drop-shadow(0 0 20px currentColor);
107
+ transition: all 0.3s ease;
108
+ }
109
+
110
+ .metric-card:hover .metric-icon {
111
+ transform: scale(1.1);
112
+ filter: drop-shadow(0 0 30px currentColor);
113
+ }
114
+
115
+ /* Table with tooltips */
116
+ .v2-styled-table th {
117
+ position: relative;
118
+ }
119
+
120
+ .tooltip-trigger {
121
+ cursor: help;
122
+ text-decoration: underline;
123
+ text-decoration-style: dotted;
124
+ text-underline-offset: 2px;
125
+ text-decoration-color: var(--accent-secondary);
126
+ }
127
+
128
+ .tooltip-content {
129
+ display: none;
130
+ position: absolute;
131
+ bottom: 100%;
132
+ left: 50%;
133
+ transform: translateX(-50%);
134
+ background: var(--bg-primary);
135
+ border: 1px solid var(--border-default);
136
+ border-radius: 8px;
137
+ padding: 12px;
138
+ max-width: 300px;
139
+ font-size: 0.85rem;
140
+ color: var(--text-secondary);
141
+ z-index: 1000;
142
+ white-space: normal;
143
+ box-shadow: 0 8px 24px rgba(0, 0, 0, 0.4);
144
+ margin-bottom: 8px;
145
+ }
146
+
147
+ .tooltip-trigger:hover .tooltip-content {
148
+ display: block;
149
+ }
150
+
151
+ /* Enhanced radio buttons with primary accent */
152
+ input[type="radio"] {
153
+ background-color: var(--bg-secondary) !important;
154
+ border-color: var(--border-default) !important;
155
+ }
156
+
157
+ input[type="radio"]:checked {
158
+ background-color: var(--accent-primary) !important;
159
+ border-color: var(--accent-primary) !important;
160
+ box-shadow: 0 0 10px var(--glow-primary) !important;
161
+ }
162
+
163
+ /* Enhanced dropdown styling */
164
+ .dropdown {
165
+ border-color: var(--border-default) !important;
166
+ background: var(--bg-card) !important;
167
+ color: var(--text-primary) !important;
168
+ transition: all 0.2s ease !important;
169
+ }
170
+
171
+ .dropdown:hover {
172
+ border-color: var(--accent-primary) !important;
173
+ box-shadow: 0 0 15px var(--glow-primary) !important;
174
+ }
175
+
176
+ /* Enhanced table styling */
177
+ .dataframe {
178
+ background: var(--bg-card) !important;
179
+ border-radius: 16px !important;
180
+ overflow: hidden !important;
181
+ border: 1px solid var(--border-subtle) !important;
182
+ font-size: 15px !important;
183
+ max-height: 600px !important;
184
+ overflow-y: auto !important;
185
+ font-family: 'Geist', -apple-system, BlinkMacSystemFont, sans-serif !important;
186
+ box-shadow: 0 4px 16px rgba(0, 0, 0, 0.3) !important;
187
+ }
188
+
189
+ /* Button styling */
190
+ button {
191
+ background: var(--bg-card) !important;
192
+ color: var(--text-primary) !important;
193
+ border: 1px solid var(--border-default) !important;
194
+ transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important;
195
+ }
196
+
197
+ button:hover {
198
+ transform: translateY(-2px) !important;
199
+ border-color: var(--accent-primary) !important;
200
+ box-shadow: 0 4px 16px rgba(255, 210, 30, 0.2) !important;
201
+ }
202
+
203
+ /* Info boxes */
204
+ .info-box {
205
+ background: var(--bg-card);
206
+ border: 1px solid var(--border-subtle);
207
+ border-radius: 12px;
208
+ padding: 20px;
209
+ margin: 8px 0;
210
+ backdrop-filter: blur(10px);
211
+ position: relative;
212
+ overflow: hidden;
213
+ transition: all 0.3s ease;
214
+ }
215
+
216
+ .info-box:hover {
217
+ border-color: var(--accent-primary);
218
+ box-shadow: 0 4px 20px var(--glow-primary);
219
+ }
220
+
221
+ /* Dark containers */
222
+ .dark-container {
223
+ background: var(--bg-card);
224
+ border: 1px solid var(--border-subtle);
225
+ border-radius: 20px;
226
+ padding: 28px;
227
+ box-shadow: 0 8px 32px rgba(0, 0, 0, 0.4);
228
+ backdrop-filter: blur(10px);
229
+ position: relative;
230
+ overflow: hidden;
231
+ }
232
+
233
+ /* Section headers */
234
+ .section-header {
235
+ display: flex;
236
+ align-items: center;
237
+ gap: 12px;
238
+ margin-bottom: 24px;
239
+ }
240
+
241
+ .section-icon {
242
+ filter: drop-shadow(0 0 12px currentColor);
243
+ transition: all 0.3s ease;
244
+ }
245
+
246
+ /* Scrollbar styling */
247
+ ::-webkit-scrollbar {
248
+ width: 8px;
249
+ height: 8px;
250
+ }
251
+
252
+ ::-webkit-scrollbar-track {
253
+ background: var(--bg-secondary);
254
+ border-radius: 4px;
255
+ }
256
+
257
+ ::-webkit-scrollbar-thumb {
258
+ background: var(--accent-secondary);
259
+ border-radius: 4px;
260
+ }
261
+
262
+ ::-webkit-scrollbar-thumb:hover {
263
+ background: var(--accent-primary);
264
+ }
265
+
266
+ /* Pulse animation */
267
+ @keyframes pulse-glow {
268
+ 0% { box-shadow: 0 0 0 0 var(--glow-primary); }
269
+ 70% { box-shadow: 0 0 0 10px transparent; }
270
+ 100% { box-shadow: 0 0 0 0 transparent; }
271
+ }
272
+
273
+ .pulse {
274
+ animation: pulse-glow 2s infinite;
275
+ }
276
+
277
+ /* Chart containers */
278
+ .chart-container {
279
+ display: flex;
280
+ justify-content: center;
281
+ align-items: center;
282
+ width: 100%;
283
+ margin: 0 auto;
284
+ }
285
+
286
+ .chart-container > div {
287
+ width: 100%;
288
+ max-width: 1400px;
289
+ margin: 0 auto;
290
+ }
291
+
292
+ /* Radar chart - remove all boundaries */
293
+ .radar-chart-container {
294
+ width: fit-content !important;
295
+ margin: 0 auto !important;
296
+ padding: 0 !important;
297
+ }
298
+
299
+ .radar-chart-container > div,
300
+ .radar-chart,
301
+ .radar-chart .gradio-plot {
302
+ width: fit-content !important;
303
+ max-width: none !important;
304
+ margin: 0 auto !important;
305
+ padding: 0 !important;
306
+ }
307
+
308
+
309
+ /* Grid layouts for cards */
310
+ .insight-card-grid {
311
+ display: grid;
312
+ grid-template-columns: repeat(5, 1fr);
313
+ gap: 16px;
314
+ }
315
+
316
+ .metric-card-grid {
317
+ display: grid;
318
+ grid-template-columns: repeat(3, 1fr);
319
+ gap: 16px;
320
+ }
321
+
322
+ /* Custom button container */
323
+ .custom-button-container {
324
+ text-align: center;
325
+ padding: 20px 0 10px 0;
326
+ margin-bottom: 10px;
327
+ }
328
+
329
+ .header-action-button {
330
+ display: inline-block !important;
331
+ padding: 14px 28px !important;
332
+ background: #ffd21e !important;
333
+ color: #FFFFFF !important;
334
+ text-decoration: none !important;
335
+ border-radius: 16px !important;
336
+ font-family: 'Geist', -apple-system, BlinkMacSystemFont, sans-serif !important;
337
+ font-weight: 700 !important;
338
+ font-size: 1.1rem !important;
339
+ transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important;
340
+ border: none !important;
341
+ cursor: pointer !important;
342
+ box-shadow: 0 8px 24px rgba(255, 210, 30, 0.4), 0 4px 12px rgba(0, 0, 0, 0.3) !important;
343
+ position: relative !important;
344
+ overflow: hidden !important;
345
+ text-shadow: 0 1px 2px rgba(0, 0, 0, 0.35) !important;
346
+ }
347
+
348
+ .header-action-button:hover {
349
+ transform: translateY(-3px) !important;
350
+ box-shadow: 0 12px 32px rgba(255, 210, 30, 0.5), 0 8px 16px rgba(0, 0, 0, 0.4) !important;
351
+ background: #ffd21e !important;
352
+ color: #FFFFFF !important;
353
+ text-decoration: none !important;
354
+ text-shadow: 0 2px 6px rgba(0, 0, 0, 0.45) !important;
355
+ }
356
+
357
+ /* Navigation buttons */
358
+ .nav-buttons-container {
359
+ display: flex;
360
+ justify-content: center;
361
+ align-items: center;
362
+ gap: 16px;
363
+ flex-wrap: wrap;
364
+ margin: 24px 0;
365
+ padding: 0 20px;
366
+ }
367
+
368
+ .nav-link-button {
369
+ display: inline-flex !important;
370
+ align-items: center !important;
371
+ gap: 8px !important;
372
+ padding: 12px 20px !important;
373
+ background: rgba(1, 9, 26, 0.8) !important;
374
+ color: #F5F6F7 !important;
375
+ text-decoration: none !important;
376
+ border-radius: 12px !important;
377
+ font-family: 'Geist', -apple-system, BlinkMacSystemFont, sans-serif !important;
378
+ font-weight: 600 !important;
379
+ font-size: 0.95rem !important;
380
+ transition: all 0.3s ease !important;
381
+ border: 2px solid rgba(245, 246, 247, 0.15) !important;
382
+ backdrop-filter: blur(10px) !important;
383
+ -webkit-backdrop-filter: blur(10px) !important;
384
+ position: relative !important;
385
+ overflow: hidden !important;
386
+ box-shadow: 0 4px 16px rgba(0, 0, 0, 0.3) !important;
387
+ }
388
+
389
+ .nav-link-button:hover {
390
+ transform: translateY(-3px) scale(1.02) !important;
391
+ border-color: #ffd21e !important;
392
+ box-shadow: 0 8px 24px rgba(255, 210, 30, 0.3), 0 4px 12px rgba(0, 0, 0, 0.4) !important;
393
+ text-decoration: none !important;
394
+ color: #FFFFFF !important;
395
+ }
396
+ </style>
397
+ """
tabs/leaderboard_v1.py ADDED
The diff for this file is too large to render. See raw diff
 
utils.py ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ def get_chart_colors():
2
+ # if is_dark_theme():
3
+ # return {
4
+ # "Private": "#60A5FA", # accent-blue
5
+ # "Open source": "#A78BFA", # accent-purple
6
+ # "performance_bands": ["#DCFCE7", "#FEF9C3", "#FEE2E2"],
7
+ # "text": "#FFFFFF",
8
+ # "background": "#1a1b1e",
9
+ # "grid": (1, 1, 1, 0.1), # RGBA tuple for grid
10
+ # }
11
+ return {
12
+ "Private": "#3F78FA", # accent-blue light
13
+ "Open source": "#A13AE2", # accent-purple light
14
+ "performance_bands": ["#DCFCE7", "#FEF9C3", "#FEE2E2"],
15
+ "text": "#111827",
16
+ "background": "#FFFFFF",
17
+ "grid": (0, 0, 0, 0.1), # RGBA tuple for grid
18
+ }
19
+
20
+
21
+ def get_rank_badge(rank):
22
+ """Generate HTML for rank badge with appropriate styling"""
23
+ badge_styles = {
24
+ 1: ("1st", "linear-gradient(145deg, #ffd700, #ffc400)", "#000"),
25
+ 2: ("2nd", "linear-gradient(145deg, #9ca3af, #787C7E)", "#fff"),
26
+ 3: ("3rd", "linear-gradient(145deg, #CD7F32, #b36a1d)", "#fff"),
27
+ }
28
+
29
+ if rank in badge_styles:
30
+ label, gradient, text_color = badge_styles[rank]
31
+ return f"""
32
+ <div style="
33
+ display: inline-flex;
34
+ align-items: center;
35
+ justify-content: center;
36
+ min-width: 48px;
37
+ padding: 4px 12px;
38
+ background: {gradient};
39
+ color: {text_color};
40
+ border-radius: 6px;
41
+ font-weight: 600;
42
+ font-size: 0.9em;
43
+ box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
44
+ ">
45
+ {label}
46
+ </div>
47
+ """
48
+ return f"""
49
+ <div style="
50
+ display: inline-flex;
51
+ align-items: center;
52
+ justify-content: center;
53
+ min-width: 28px;
54
+ color: #a1a1aa;
55
+ font-weight: 500;
56
+ ">
57
+ {rank}
58
+ </div>
59
+ """
60
+
61
+
62
+ def get_type_badge(model_type):
63
+ """Generate HTML for model type badge"""
64
+ colors = get_chart_colors()
65
+ color_map = {
66
+ "Open source": colors.get("Open source", "#A13AE2"),
67
+ "Proprietary": colors.get("Private", "#3F78FA"),
68
+ "Private": colors.get("Private", "#3F78FA"),
69
+ }
70
+ label_map = {
71
+ "Open source": "OSS",
72
+ "Proprietary": "API",
73
+ "Private": "API",
74
+ }
75
+ bg_color = color_map.get(model_type, "#4F46E5")
76
+ display_label = label_map.get(model_type, model_type)
77
+ return f"""
78
+ <div style="
79
+ display: inline-flex;
80
+ align-items: center;
81
+ padding: 4px 8px;
82
+ background: {bg_color};
83
+ color: white;
84
+ border-radius: 4px;
85
+ font-size: 0.85em;
86
+ font-weight: 500;
87
+ ">
88
+ {display_label}
89
+ </div>
90
+ """
91
+
92
+
93
+ def get_score_bar(score):
94
+ """Generate HTML for score bar with gradient styling"""
95
+ width = score * 100
96
+ return f"""
97
+ <div style="display: flex; align-items: center; gap: 12px; width: 100%;">
98
+ <div style="
99
+ flex-grow: 1;
100
+ height: 8px;
101
+ background: var(--score-bg, rgba(255, 255, 255, 0.1));
102
+ border-radius: 4px;
103
+ overflow: hidden;
104
+ max-width: 200px;
105
+ ">
106
+ <div style="
107
+ width: {width}%;
108
+ height: 100%;
109
+ background: linear-gradient(90deg, var(--accent-blue, #60A5FA), var(--accent-purple, #A78BFA));
110
+ border-radius: 4px;
111
+ transition: width 0.3s ease;
112
+ "></div>
113
+ </div>
114
+ <span style="
115
+ font-family: 'SF Mono', monospace;
116
+ font-weight: 600;
117
+ color: var(--text-primary, #ffffff);
118
+ min-width: 60px;
119
+ ">{score:.3f}</span>
120
+ </div>
121
+ """
122
+
123
+
124
+ def get_output_type_badge(output_type):
125
+ """Generate HTML for output type badges with different colors, supporting both light and dark themes"""
126
+ type_styles = {
127
+ "Normal": {
128
+ "light": {"bg": "#F3F4F6", "color": "#374151"},
129
+ "dark": {"bg": "#374151", "color": "#F3F4F6"},
130
+ },
131
+ "Reasoning": {
132
+ "light": {"bg": "#DBEAFE", "color": "#1E40AF"},
133
+ "dark": {"bg": "#1E40AF", "color": "#DBEAFE"},
134
+ },
135
+ }
136
+
137
+ style = type_styles.get(output_type, type_styles["Normal"])
138
+ return f"""
139
+ <span style="
140
+ background: var(--bg-color, {style['light']['bg']});
141
+ color: var(--text-color, {style['light']['color']});
142
+ padding: 4px 8px;
143
+ border-radius: 4px;
144
+ font-size: 0.875rem;
145
+ font-weight: 500;
146
+ ">
147
+ {output_type}
148
+ </span>
149
+ """
visualization.py ADDED
@@ -0,0 +1,258 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from utils import get_chart_colors
2
+ import matplotlib
3
+ import matplotlib.pyplot as plt
4
+ import numpy as np
5
+ import plotly.graph_objects as go
6
+
7
+
8
+ def setup_matplotlib():
9
+ matplotlib.use("Agg")
10
+ plt.close("all")
11
+
12
+
13
+ def get_performance_chart(df, category_name="Overall"):
14
+ plt.close("all")
15
+ colors = get_chart_colors()
16
+ score_column = "Category Score"
17
+ df_sorted = df.sort_values(score_column, ascending=True)
18
+
19
+ height = max(8, len(df_sorted) * 0.8)
20
+ fig, ax = plt.subplots(figsize=(16, height))
21
+ plt.rcParams.update({"font.size": 12})
22
+
23
+ fig.patch.set_facecolor(colors["background"])
24
+ ax.set_facecolor(colors["background"])
25
+
26
+ try:
27
+ bars = ax.barh(
28
+ np.arange(len(df_sorted)),
29
+ df_sorted[score_column],
30
+ height=0.4,
31
+ capstyle="round",
32
+ color=[colors[t] for t in df_sorted["Model Type"]],
33
+ )
34
+
35
+ ax.set_title(
36
+ f"Model Performance - {category_name}",
37
+ pad=20,
38
+ fontsize=20,
39
+ fontweight="bold",
40
+ color=colors["text"],
41
+ )
42
+ ax.set_xlabel(
43
+ "Average Score (Tool Selection Quality)",
44
+ fontsize=14,
45
+ fontweight="bold",
46
+ labelpad=10,
47
+ color=colors["text"],
48
+ )
49
+ ax.set_xlim(0.0, 1.0)
50
+
51
+ ax.set_yticks(np.arange(len(df_sorted)))
52
+ ax.set_yticklabels(
53
+ df_sorted["Model"], fontsize=12, fontweight="bold", color=colors["text"]
54
+ )
55
+
56
+ plt.subplots_adjust(left=0.35)
57
+
58
+ for i, v in enumerate(df_sorted[score_column]):
59
+ ax.text(
60
+ v + 0.01,
61
+ i,
62
+ f"{v:.3f}",
63
+ va="center",
64
+ fontsize=12,
65
+ fontweight="bold",
66
+ color=colors["text"],
67
+ )
68
+
69
+ ax.grid(True, axis="x", linestyle="--", alpha=0.2, color=colors["grid"])
70
+ ax.spines[["top", "right"]].set_visible(False)
71
+ ax.spines[["bottom", "left"]].set_color(colors["grid"])
72
+ ax.tick_params(colors=colors["text"])
73
+
74
+ legend_elements = [
75
+ plt.Rectangle((0, 0), 1, 1, facecolor=color, label=label)
76
+ for label, color in {
77
+ k: colors[k] for k in ["Private", "Open source"]
78
+ }.items()
79
+ ]
80
+ ax.legend(
81
+ handles=legend_elements,
82
+ title="Model Type",
83
+ loc="lower right",
84
+ fontsize=12,
85
+ title_fontsize=14,
86
+ facecolor=colors["background"],
87
+ labelcolor=colors["text"],
88
+ )
89
+
90
+ plt.tight_layout()
91
+ return fig
92
+ finally:
93
+ plt.close(fig)
94
+
95
+ def create_radar_plot(df, model_names):
96
+ datasets = [col for col in df.columns[7:] if col != "IO Cost"]
97
+ fig = go.Figure()
98
+
99
+ colors = ["rgba(99, 102, 241, 0.3)", "rgba(34, 197, 94, 0.3)"]
100
+ line_colors = ["#4F46E5", "#16A34A"]
101
+
102
+ for idx, model_name in enumerate(model_names):
103
+ model_data = df[df["Model"] == model_name].iloc[0]
104
+ values = [model_data[m] for m in datasets]
105
+ values.append(values[0])
106
+ datasets_plot = datasets + [datasets[0]]
107
+
108
+ fig.add_trace(
109
+ go.Scatterpolar(
110
+ r=values,
111
+ theta=datasets_plot,
112
+ fill="toself",
113
+ fillcolor=colors[idx % len(colors)],
114
+ line=dict(color=line_colors[idx % len(line_colors)], width=2),
115
+ name=model_name,
116
+ text=[f"{val:.3f}" for val in values],
117
+ textposition="middle right",
118
+ mode="lines+markers+text",
119
+ )
120
+ )
121
+
122
+ fig.update_layout(
123
+ polar=dict(
124
+ radialaxis=dict(
125
+ visible=True, range=[0, 1], showline=False, tickfont=dict(size=12)
126
+ ),
127
+ angularaxis=dict(
128
+ tickfont=dict(size=13, family="Arial"),
129
+ rotation=90,
130
+ direction="clockwise",
131
+ ),
132
+ domain=dict(x=[0.1, 0.9], y=[0.1, 0.9])
133
+ ),
134
+ showlegend=True,
135
+ legend=dict(
136
+ orientation="h",
137
+ yanchor="bottom",
138
+ y=-0.15,
139
+ xanchor="center",
140
+ x=0.5,
141
+ font=dict(size=14),
142
+ ),
143
+ title=dict(
144
+ text="Model Comparison",
145
+ x=0.5,
146
+ y=0.95,
147
+ font=dict(size=24, family="Arial", color="#1F2937"),
148
+ ),
149
+ paper_bgcolor="white",
150
+ plot_bgcolor="white",
151
+ height=800,
152
+ width=900,
153
+ margin=dict(t=30, b=50, l=10, r=10),
154
+ autosize=True,
155
+ )
156
+
157
+ return fig
158
+
159
+
160
+ def get_performance_cost_chart(df, category_name="Overall"):
161
+ colors = get_chart_colors()
162
+ fig, ax = plt.subplots(figsize=(12, 8), dpi=300)
163
+
164
+ fig.patch.set_facecolor(colors["background"])
165
+ ax.set_facecolor(colors["background"])
166
+ ax.grid(True, linestyle="--", alpha=0.15, which="both", color=colors["grid"])
167
+
168
+ score_column = "Category Score"
169
+
170
+ for _, row in df.iterrows():
171
+ color = colors[row["Model Type"]]
172
+ size = 100 if row[score_column] > 0.85 else 80
173
+ edge_color = (
174
+ colors["Private"]
175
+ if row["Model Type"] == "Private"
176
+ else colors["Open source"]
177
+ )
178
+
179
+ ax.scatter(
180
+ row["IO Cost"],
181
+ row[score_column] * 100,
182
+ c=color,
183
+ s=size,
184
+ alpha=0.9,
185
+ edgecolor=edge_color,
186
+ linewidth=1,
187
+ zorder=5,
188
+ )
189
+
190
+ bbox_props = dict(
191
+ boxstyle="round,pad=0.3", fc=colors["background"], ec="none", alpha=0.8
192
+ )
193
+
194
+ ax.annotate(
195
+ f"{row['Model']}\n(${row['IO Cost']:.2f})",
196
+ (row["IO Cost"], row[score_column] * 100),
197
+ xytext=(5, 5),
198
+ textcoords="offset points",
199
+ fontsize=8,
200
+ fontweight="bold",
201
+ color=colors["text"],
202
+ bbox=bbox_props,
203
+ zorder=6,
204
+ )
205
+
206
+ ax.set_xscale("log")
207
+ ax.set_xlim(0.08, 1000)
208
+ ax.set_ylim(60, 100)
209
+
210
+ ax.set_xlabel(
211
+ "I/O Cost per Million Tokens ($)",
212
+ fontsize=10,
213
+ fontweight="bold",
214
+ labelpad=10,
215
+ color=colors["text"],
216
+ )
217
+ ax.set_ylabel(
218
+ "Model Performance Score",
219
+ fontsize=10,
220
+ fontweight="bold",
221
+ labelpad=10,
222
+ color=colors["text"],
223
+ )
224
+
225
+ legend_elements = [
226
+ plt.scatter([], [], c=colors[label], label=label, s=80)
227
+ for label in ["Private", "Open source"]
228
+ ]
229
+ ax.legend(
230
+ handles=legend_elements,
231
+ loc="upper right",
232
+ frameon=True,
233
+ facecolor=colors["background"],
234
+ edgecolor="none",
235
+ fontsize=9,
236
+ labelcolor=colors["text"],
237
+ )
238
+
239
+ ax.set_title(
240
+ f"Performance vs. Cost - {category_name}",
241
+ fontsize=14,
242
+ pad=15,
243
+ fontweight="bold",
244
+ color=colors["text"],
245
+ )
246
+
247
+ for y1, y2, color in zip([85, 75, 60], [100, 85, 75], colors["performance_bands"]):
248
+ ax.axhspan(y1, y2, alpha=0.2, color=color, zorder=1)
249
+
250
+ ax.tick_params(axis="both", which="major", labelsize=9, colors=colors["text"])
251
+ ax.tick_params(axis="both", which="minor", labelsize=8, colors=colors["text"])
252
+ ax.xaxis.set_minor_locator(plt.LogLocator(base=10.0, subs=np.arange(2, 10) * 0.1))
253
+
254
+ for spine in ax.spines.values():
255
+ spine.set_color(colors["grid"])
256
+
257
+ plt.tight_layout()
258
+ return fig