gemma-3-12b-it / app.py
reach-vb's picture
reach-vb HF staff
Update app.py
d5dc722 verified
raw
history blame
9.23 kB
#!/usr/bin/env python
from collections.abc import Iterator
from threading import Thread
import gradio as gr
import spaces
import torch
import re
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer
model_id = "google/gemma-3-12b-it"
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
model = Gemma3ForConditionalGeneration.from_pretrained(
model_id, device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="eager"
)
import cv2
from PIL import Image
import numpy as np
import tempfile
def downsample_video(video_path):
vidcap = cv2.VideoCapture(video_path)
fps = vidcap.get(cv2.CAP_PROP_FPS)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
frame_interval = int(fps / 3)
frames = []
for i in range(0, total_frames, frame_interval):
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
def process_new_user_message(message: dict) -> list[dict]:
if message["files"]:
if "<image>" in message["text"]:
content = []
print("message[files]", message["files"])
parts = re.split(r'(<image>)', message["text"])
image_index = 0
print("parts", parts)
for part in parts:
print("part", part)
if part == "<image>":
content.append({"type": "image", "url": message["files"][image_index]})
print("file", message["files"][image_index])
image_index += 1
elif part.strip():
content.append({"type": "text", "text": part.strip()})
elif isinstance(part, str) and not part == "<image>":
content.append({"type": "text", "text": part})
print(content)
return content
elif message["files"][0].endswith(".mp4"):
content = []
video = message["files"].pop(0)
frames = downsample_video(video)
for frame in frames:
pil_image, timestamp = frame
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as temp_file:
pil_image.save(temp_file.name)
content.append({"type": "text", "text": f"Frame {timestamp}:"})
content.append({"type": "image", "url": temp_file.name})
print(content)
return content
else:
# non interleaved images
return [{"type": "text", "text": message["text"]}, *[{"type": "image", "url": path} for path in message["files"]]]
else:
return [{"type": "text", "text": message["text"]}]
def process_history(history: list[dict]) -> list[dict]:
messages = []
current_user_content: list[dict] = []
for item in history:
if item["role"] == "assistant":
if current_user_content:
messages.append({"role": "user", "content": current_user_content})
current_user_content = []
messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]})
else:
content = item["content"]
if isinstance(content, str):
current_user_content.append({"type": "text", "text": content})
else:
current_user_content.append({"type": "image", "url": content[0]})
return messages
@spaces.GPU(duration=120)
def run(message: dict, history: list[dict], system_prompt: str = "", max_new_tokens: int = 512) -> Iterator[str]:
messages = []
if system_prompt:
messages.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]})
messages.extend(process_history(history))
messages.append({"role": "user", "content": process_new_user_message(message)})
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(device=model.device, dtype=torch.bfloat16)
streamer = TextIteratorStreamer(processor, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
output = ""
for delta in streamer:
output += delta
yield output
examples = [
[
{
"text": "I need to be in Japan for 10 days, going to Tokyo, Kyoto and Osaka. Think about number of attractions in each of them and allocate number of days to each city. Make public transport recommendations.",
"files": [],
}
],
[
{
"text": "Write the matplotlib code to generate the same bar chart.",
"files": ["assets/sample-images/barchart.png"],
}
],
[
{
"text": "What is odd about this video?",
"files": ["assets/sample-images/tmp.mp4"],
}
],
[
{
"text": "I already have this supplement <image> and I want to buy this one <image>. Do they have known interactions?",
"files": ["assets/sample-images/pill1.png", "assets/sample-images/pill2.png"],
}
],
[
{
"text": "Write a poem inspired by the visual elements of the images.",
"files": ["assets/sample-images/06-1.png", "assets/sample-images/06-2.png"],
}
],
[
{
"text": "Compose a short musical piece inspired by the visual elements of the images.",
"files": [
"assets/sample-images/07-1.png",
"assets/sample-images/07-2.png",
"assets/sample-images/07-3.png",
"assets/sample-images/07-4.png",
],
}
],
[
{
"text": "Write a short story about what might have happened in this house.",
"files": ["assets/sample-images/08.png"],
}
],
[
{
"text": "Create a short story based on the sequence of images.",
"files": [
"assets/sample-images/09-1.png",
"assets/sample-images/09-2.png",
"assets/sample-images/09-3.png",
"assets/sample-images/09-4.png",
"assets/sample-images/09-5.png",
],
}
],
[
{
"text": "Describe the creatures that would live in this world.",
"files": ["assets/sample-images/10.png"],
}
],
[
{
"text": "Read text in the image.",
"files": ["assets/additional-examples/1.png"],
}
],
[
{
"text": "When is this ticket dated and how much did it cost?",
"files": ["assets/additional-examples/2.png"],
}
],
[
{
"text": "Read the text in the image into markdown.",
"files": ["assets/additional-examples/3.png"],
}
],
[
{
"text": "Evaluate this integral.",
"files": ["assets/additional-examples/4.png"],
}
],
[
{
"text": "caption this image",
"files": ["assets/sample-images/01.png"],
}
],
[
{
"text": "What's the sign says?",
"files": ["assets/sample-images/02.png"],
}
],
[
{
"text": "Compare and contrast the two images.",
"files": ["assets/sample-images/03.png"],
}
],
[
{
"text": "List all the objects in the image and their colors.",
"files": ["assets/sample-images/04.png"],
}
],
[
{
"text": "Describe the atmosphere of the scene.",
"files": ["assets/sample-images/05.png"],
}
],
]
demo = gr.ChatInterface(
fn=run,
type="messages",
textbox=gr.MultimodalTextbox(file_types=["image", ".mp4"], file_count="multiple"),
multimodal=True,
additional_inputs=[
gr.Textbox(label="System Prompt", value="You are a helpful assistant."),
gr.Slider(label="Max New Tokens", minimum=100, maximum=2000, step=10, value=700),
],
stop_btn=False,
title="Gemma 3 12B IT",
description="<img src='https://huggingface.co/spaces/huggingface-projects/gemma-3-12b-it/resolve/main/assets/logo.png' id='logo' /><br>This is a demo of Gemma 3 12B it, a vision language model with outstanding performance on a wide range of tasks. You can upload images, interleaved images and videos. Note that video input only supports single-turn conversation and mp4 input.",
examples=examples,
run_examples_on_click=False,
cache_examples=False,
css_paths="style.css",
delete_cache=(1800, 1800),
)
if __name__ == "__main__":
demo.launch()