import spaces import os from huggingface_hub import login import gradio as gr from cached_path import cached_path import tempfile from vinorm import TTSnorm from f5_tts.model import DiT from f5_tts.infer.utils_infer import ( preprocess_ref_audio_text, load_vocoder, load_model, infer_process, save_spectrogram, ) # Retrieve token from secrets hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN") # Log in to Hugging Face if hf_token: login(token=hf_token) def post_process(text): text = " " + text + " " text = text.replace(" . . ", " . ") text = " " + text + " " text = text.replace(" .. ", " . ") text = " " + text + " " text = text.replace(" , , ", " , ") text = " " + text + " " text = text.replace(" ,, ", " , ") text = " " + text + " " text = text.replace('"', "") return " ".join(text.split()) # Load models vocoder = load_vocoder() model = load_model( DiT, dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4), ckpt_path=str(cached_path("hf://hynt/F5-TTS-Vietnamese-100h/model_500000.pt")), vocab_file=str(cached_path("hf://hynt/F5-TTS-Vietnamese-100h/vocab.txt")), ) @spaces.GPU def infer_tts(ref_audio_orig: str, gen_text: str, speed: float = 1.0, request: gr.Request = None): if not ref_audio_orig: raise gr.Error("Please upload a sample audio file.") if not gen_text.strip(): raise gr.Error("Please enter the text content to generate voice.") if len(gen_text.split()) > 1000: raise gr.Error("Please enter text content with less than 1000 words.") try: ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_orig, "") final_wave, final_sample_rate, spectrogram = infer_process( ref_audio, ref_text.lower(), post_process(TTSnorm(gen_text)).lower(), model, vocoder, speed=speed ) with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram: spectrogram_path = tmp_spectrogram.name save_spectrogram(spectrogram, spectrogram_path) return (final_sample_rate, final_wave), spectrogram_path except Exception as e: raise gr.Error(f"Error generating voice: {e}") # Gradio UI with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown(""" # 🎤 F5-TTS: Vietnamese Text-to-Speech Synthesis. # The model was trained for 500.000 steps with approximately 150 hours of data on an RTX 3090 GPU. Enter text and upload a sample voice to generate natural speech. """) with gr.Row(): ref_audio = gr.Audio(label="🔊 Sample Voice", type="filepath") gen_text = gr.Textbox(label="📝 Text", placeholder="Enter the text to generate voice...", lines=3) speed = gr.Slider(0.3, 2.0, value=1.0, step=0.1, label="⚡ Speed") btn_synthesize = gr.Button("🔥 Generate Voice") with gr.Row(): output_audio = gr.Audio(label="🎧 Generated Audio", type="numpy") output_spectrogram = gr.Image(label="📊 Spectrogram") model_limitations = gr.Textbox( value="""1. This model may not perform well with numerical characters, dates, special characters, etc. => A text normalization module is needed. 2. The rhythm of some generated audios may be inconsistent or choppy => It is recommended to select clearly pronounced sample audios with minimal pauses for better synthesis quality. 3. Default, reference audio text uses the whisper-large-v3-turbo model, which may not always accurately recognize Vietnamese, resulting in poor voice synthesis quality. 4. Checkpoint is stopped at step 500.000, trained with 150 hours of public data => Voice cloning for non-native voices may not be perfectly accurate. 5. Inference with overly long paragraphs may produce poor results.""", label="❗ Model Limitations", lines=5, interactive=False ) btn_synthesize.click(infer_tts, inputs=[ref_audio, gen_text, speed], outputs=[output_audio, output_spectrogram]) # Run Gradio with share=True to get a gradio.live link demo.queue().launch()