hysts's picture
hysts HF Staff
Update
ffaf291
#!/usr/bin/env python
from __future__ import annotations
import io
import tarfile
import gradio as gr
import numpy as np
import PIL.Image
from huggingface_hub import hf_hub_download
TITLE = "TADNE (This Anime Does Not Exist) Image Selector"
DESCRIPTION = """The original TADNE site is https://thisanimedoesnotexist.ai/.
You can view images generated by the TADNE model with seed 0-99999.
You can filter images based on predictions by the [DeepDanbooru](https://github.com/KichangKim/DeepDanbooru) model.
The resolution of the output images in this app is 128x128, but you can
check the original 512x512 images from URLs like
https://thisanimedoesnotexist.ai/slider.html?seed=10000 using the output seeds.
Expected execution time on Hugging Face Spaces: 4s
Related Apps:
- [TADNE](https://huggingface.co/spaces/hysts/TADNE)
- [TADNE Image Viewer](https://huggingface.co/spaces/hysts/TADNE-image-viewer)
- [TADNE Interpolation](https://huggingface.co/spaces/hysts/TADNE-interpolation)
- [TADNE Image Search with DeepDanbooru](https://huggingface.co/spaces/hysts/TADNE-image-search-with-DeepDanbooru)
- [DeepDanbooru](https://huggingface.co/spaces/hysts/DeepDanbooru)
"""
def load_deepdanbooru_tag_dict() -> dict[str, int]:
path = hf_hub_download("public-data/DeepDanbooru", "tags.txt")
with open(path) as f:
tags = [line.strip() for line in f.readlines()]
return {tag: i for i, tag in enumerate(tags)}
def load_deepdanbooru_predictions(dirname: str) -> np.ndarray:
path = hf_hub_download(
"hysts/TADNE-sample-images",
f"prediction_results/deepdanbooru/{dirname}.npy",
repo_type="dataset",
)
return np.load(path)
image_size = 128
min_seed = 0
max_seed = 99999
dirname = "0-99999"
tarball_path = hf_hub_download("hysts/TADNE-sample-images", f"{image_size}/{dirname}.tar", repo_type="dataset")
deepdanbooru_tag_dict = load_deepdanbooru_tag_dict()
deepdanbooru_predictions = load_deepdanbooru_predictions(dirname)
def run(
general_tags: list[str],
hair_color_tags: list[str],
hair_style_tags: list[str],
eye_color_tags: list[str],
image_color_tags: list[str],
other_tags: list[str],
additional_tags_str: str,
score_threshold: float,
start_index: int,
nrows: int,
ncols: int,
) -> tuple[int, np.ndarray, np.ndarray, str]:
hair_color_tags = [f"{color}_hair" for color in hair_color_tags]
eye_color_tags = [f"{color}_eyes" for color in eye_color_tags]
additional_tags = additional_tags_str.split(",")
tags = (
general_tags
+ hair_color_tags
+ hair_style_tags
+ eye_color_tags
+ image_color_tags
+ other_tags
+ additional_tags
)
missing_tags = [tag for tag in tags if tag not in deepdanbooru_tag_dict]
tag_indices = [deepdanbooru_tag_dict[tag] for tag in tags if tag in deepdanbooru_tag_dict]
conditions = deepdanbooru_predictions[:, tag_indices] > score_threshold
image_indices = np.arange(len(deepdanbooru_predictions))
image_indices = image_indices[conditions.all(axis=1)]
start_index = int(start_index)
num = nrows * ncols
seeds = []
images = []
dummy = np.ones((image_size, image_size, 3), dtype=np.uint8) * 255
with tarfile.TarFile(tarball_path) as tar_file:
for index in range(start_index, start_index + num):
if index >= len(image_indices):
seeds.append(np.nan)
images.append(dummy)
continue
image_index = image_indices[index]
seeds.append(image_index)
member = tar_file.getmember(f"{dirname}/{image_index:07d}.jpg")
with tar_file.extractfile(member) as f: # type: ignore
data = io.BytesIO(f.read())
image = PIL.Image.open(data)
image = np.asarray(image)
images.append(image)
res = (
np.asarray(images)
.reshape(nrows, ncols, image_size, image_size, 3)
.transpose(0, 2, 1, 3, 4)
.reshape(nrows * image_size, ncols * image_size, 3)
)
seeds = np.asarray(seeds).reshape(nrows, ncols)
return len(image_indices), res, seeds, ",".join(missing_tags)
demo = gr.Interface(
fn=run,
inputs=[
gr.CheckboxGroup(
label="General",
choices=[
"1girl",
"1boy",
"multiple_girls",
"multiple_boys",
"looking_at_viewer",
],
),
gr.CheckboxGroup(
label="Hair Color",
choices=[
"aqua",
"black",
"blonde",
"blue",
"brown",
"green",
"grey",
"orange",
"pink",
"purple",
"red",
"silver",
"white",
],
),
gr.CheckboxGroup(
label="Hair Style",
choices=[
"bangs",
"curly_hair",
"long_hair",
"medium_hair",
"messy_hair",
"ponytail",
"short_hair",
"straight_hair",
"twintails",
],
),
gr.CheckboxGroup(
label="Eye Color",
choices=[
"aqua",
"black",
"blue",
"brown",
"green",
"grey",
"orange",
"pink",
"purple",
"red",
"white",
"yellow",
],
),
gr.CheckboxGroup(
label="Image Color",
choices=[
"greyscale",
"monochrome",
],
),
gr.CheckboxGroup(
label="Others",
choices=[
"animal_ears",
"closed_eyes",
"full_body",
"hat",
"smile",
],
),
gr.Textbox(label="Additional Tags"),
gr.Slider(label="DeepDanbooru Score Threshold", minimum=0, maximum=1, step=0.1, value=0.5),
gr.Number(label="Start Index", value=0),
gr.Slider(label="Number of Rows", minimum=0, maximum=10, step=1, value=2),
gr.Slider(label="Number of Columns", minimum=0, maximum=10, step=1, value=5),
],
outputs=[
gr.Textbox(label="Number of Found Images"),
gr.Image(label="Output"),
gr.Dataframe(label="Seed"),
gr.Textbox(label="Missing Tags"),
],
title=TITLE,
description=DESCRIPTION,
)
if __name__ == "__main__":
demo.queue().launch()