Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
from __future__ import annotations | |
import io | |
import pathlib | |
import tarfile | |
import gradio as gr | |
import numpy as np | |
import PIL.Image | |
from huggingface_hub import hf_hub_download | |
TITLE = "TADNE (This Anime Does Not Exist) Image Viewer" | |
DESCRIPTION = """The original TADNE site is https://thisanimedoesnotexist.ai/. | |
You can view images generated by the TADNE model with seed 0-99999. | |
The original images are 512x512 in size, but they are resized to 128x128 here. | |
Expected execution time on Hugging Face Spaces: 4s | |
Related Apps: | |
- [TADNE](https://huggingface.co/spaces/hysts/TADNE) | |
- [TADNE Image Viewer](https://huggingface.co/spaces/hysts/TADNE-image-viewer) | |
- [TADNE Image Selector](https://huggingface.co/spaces/hysts/TADNE-image-selector) | |
- [TADNE Interpolation](https://huggingface.co/spaces/hysts/TADNE-interpolation) | |
- [TADNE Image Search with DeepDanbooru](https://huggingface.co/spaces/hysts/TADNE-image-search-with-DeepDanbooru) | |
""" | |
image_size = 128 | |
min_seed = 0 | |
max_seed = 99999 | |
dirname = "0-99999" | |
tarball_path = hf_hub_download("hysts/TADNE-sample-images", f"{image_size}/{dirname}.tar", repo_type="dataset") | |
def run( | |
start_seed: int, | |
nrows: int, | |
ncols: int, | |
) -> np.ndarray: | |
start_seed = int(start_seed) | |
num = nrows * ncols | |
images = [] | |
dummy = np.ones((image_size, image_size, 3), dtype=np.uint8) * 255 | |
with tarfile.TarFile(tarball_path) as tar_file: | |
for seed in range(start_seed, start_seed + num): | |
if not min_seed <= seed <= max_seed: | |
images.append(dummy) | |
continue | |
member = tar_file.getmember(f"{dirname}/{seed:07d}.jpg") | |
with tar_file.extractfile(member) as f: # type: ignore | |
data = io.BytesIO(f.read()) | |
image = PIL.Image.open(data) | |
image = np.asarray(image) | |
images.append(image) | |
res = ( | |
np.asarray(images) | |
.reshape(nrows, ncols, image_size, image_size, 3) | |
.transpose(0, 2, 1, 3, 4) | |
.reshape(nrows * image_size, ncols * image_size, 3) | |
) | |
return res | |
demo = gr.Interface( | |
fn=run, | |
inputs=[ | |
gr.Number(label="Start Seed", value=0), | |
gr.Slider(label="Number of Rows", minimum=1, maximum=10, step=1, value=2), | |
gr.Slider(label="Number of Columns", minimum=1, maximum=10, step=1, value=5), | |
], | |
outputs=gr.Image(label="Output"), | |
title=TITLE, | |
description=DESCRIPTION, | |
) | |
if __name__ == "__main__": | |
demo.queue().launch() | |