Spaces:
Running
on
Zero
Running
on
Zero
| #!/usr/bin/env python | |
| """A demo of the VitPose model. | |
| This code is based on the implementation from the Colab notebook: | |
| https://colab.research.google.com/drive/1e8fcby5rhKZWcr9LSN8mNbQ0TU4Dxxpo | |
| """ | |
| import pathlib | |
| import gradio as gr | |
| import PIL.Image | |
| import spaces | |
| import supervision as sv | |
| import torch | |
| from transformers import AutoProcessor, RTDetrForObjectDetection, VitPoseForPoseEstimation | |
| DESCRIPTION = "# ViTPose" | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| person_detector_name = "PekingU/rtdetr_r50vd_coco_o365" | |
| person_image_processor = AutoProcessor.from_pretrained(person_detector_name) | |
| person_model = RTDetrForObjectDetection.from_pretrained(person_detector_name, device_map=device) | |
| pose_model_name = "usyd-community/vitpose-base-simple" | |
| pose_image_processor = AutoProcessor.from_pretrained(pose_model_name) | |
| pose_model = VitPoseForPoseEstimation.from_pretrained(pose_model_name, device_map=device) | |
| def run(image: PIL.Image.Image) -> tuple[PIL.Image.Image, list[dict]]: | |
| inputs = person_image_processor(images=image, return_tensors="pt").to(device) | |
| outputs = person_model(**inputs) | |
| results = person_image_processor.post_process_object_detection( | |
| outputs, target_sizes=torch.tensor([(image.height, image.width)]), threshold=0.3 | |
| ) | |
| result = results[0] # take first image results | |
| # Human label refers 0 index in COCO dataset | |
| person_boxes_xyxy = result["boxes"][result["labels"] == 0] | |
| person_boxes_xyxy = person_boxes_xyxy.cpu().numpy() | |
| # Convert boxes from VOC (x1, y1, x2, y2) to COCO (x1, y1, w, h) format | |
| person_boxes = person_boxes_xyxy.copy() | |
| person_boxes[:, 2] = person_boxes[:, 2] - person_boxes[:, 0] | |
| person_boxes[:, 3] = person_boxes[:, 3] - person_boxes[:, 1] | |
| inputs = pose_image_processor(image, boxes=[person_boxes], return_tensors="pt").to(device) | |
| # for vitpose-plus-base checkpoint we should additionaly provide dataset_index | |
| # to sepcify which MOE experts to use for inference | |
| if pose_model.config.backbone_config.num_experts > 1: | |
| dataset_index = torch.tensor([0] * len(inputs["pixel_values"])) | |
| dataset_index = dataset_index.to(inputs["pixel_values"].device) | |
| inputs["dataset_index"] = dataset_index | |
| outputs = pose_model(**inputs) | |
| pose_results = pose_image_processor.post_process_pose_estimation(outputs, boxes=[person_boxes]) | |
| image_pose_result = pose_results[0] # results for first image | |
| # make results more human-readable | |
| human_readable_results = [] | |
| for i, person_pose in enumerate(image_pose_result): | |
| data = { | |
| "person_id": i, | |
| "bbox": person_pose["bbox"].numpy().tolist(), | |
| "keypoints": [], | |
| } | |
| for keypoint, label, score in zip( | |
| person_pose["keypoints"], person_pose["labels"], person_pose["scores"], strict=True | |
| ): | |
| keypoint_name = pose_model.config.id2label[label.item()] | |
| x, y = keypoint | |
| data["keypoints"].append({"name": keypoint_name, "x": x.item(), "y": y.item(), "score": score.item()}) | |
| human_readable_results.append(data) | |
| # preprocess to torch tensor of shape (n_objects, n_keypoints, 2) | |
| xy = [pose_result["keypoints"] for pose_result in image_pose_result] | |
| xy = torch.stack(xy).cpu().numpy() | |
| scores = [pose_result["scores"] for pose_result in image_pose_result] | |
| scores = torch.stack(scores).cpu().numpy() | |
| keypoints = sv.KeyPoints(xy=xy, confidence=scores) | |
| detections = sv.Detections(xyxy=person_boxes_xyxy) | |
| edge_annotator = sv.EdgeAnnotator(color=sv.Color.GREEN, thickness=1) | |
| vertex_annotator = sv.VertexAnnotator(color=sv.Color.RED, radius=2) | |
| bounding_box_annotator = sv.BoxAnnotator(color=sv.Color.WHITE, color_lookup=sv.ColorLookup.INDEX, thickness=1) | |
| annotated_frame = image.copy() | |
| # annotate boundg boxes | |
| annotated_frame = bounding_box_annotator.annotate(scene=image.copy(), detections=detections) | |
| # annotate edges and verticies | |
| annotated_frame = edge_annotator.annotate(scene=annotated_frame, key_points=keypoints) | |
| return vertex_annotator.annotate(scene=annotated_frame, key_points=keypoints), human_readable_results | |
| paths = sorted(pathlib.Path("images").glob("*.jpg")) | |
| with gr.Blocks(css_paths="style.css") as demo: | |
| gr.Markdown(DESCRIPTION) | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image(label="Input Image", type="pil") | |
| run_button = gr.Button() | |
| with gr.Column(): | |
| output_image = gr.Image(label="Output Image") | |
| output_json = gr.JSON(label="Output JSON") | |
| gr.Examples(examples=paths, inputs=input_image, outputs=[output_image, output_json], fn=run) | |
| run_button.click( | |
| fn=run, | |
| inputs=input_image, | |
| outputs=[output_image, output_json], | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=20).launch() | |