Add files
Browse files- .gitmodules +3 -0
- anime_face_landmark_detection +1 -0
- app.py +175 -0
- requirements.txt +3 -0
.gitmodules
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[submodule "anime_face_landmark_detection"]
|
| 2 |
+
path = anime_face_landmark_detection
|
| 3 |
+
url = https://github.com/kanosawa/anime_face_landmark_detection
|
anime_face_landmark_detection
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
Subproject commit 95231f3884fc531273c731ce4d8f583b61e5530d
|
app.py
ADDED
|
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
from __future__ import annotations
|
| 4 |
+
|
| 5 |
+
import argparse
|
| 6 |
+
import functools
|
| 7 |
+
import os
|
| 8 |
+
import pathlib
|
| 9 |
+
import sys
|
| 10 |
+
import tarfile
|
| 11 |
+
import urllib
|
| 12 |
+
from typing import Callable
|
| 13 |
+
|
| 14 |
+
sys.path.insert(0, 'anime_face_landmark_detection')
|
| 15 |
+
|
| 16 |
+
import cv2
|
| 17 |
+
import gradio as gr
|
| 18 |
+
import huggingface_hub
|
| 19 |
+
import numpy as np
|
| 20 |
+
import PIL.Image
|
| 21 |
+
import torch
|
| 22 |
+
import torchvision.transforms as T
|
| 23 |
+
from CFA import CFA
|
| 24 |
+
|
| 25 |
+
TOKEN = os.environ['TOKEN']
|
| 26 |
+
|
| 27 |
+
MODEL_REPO = 'hysts/anime_face_landmark_detection'
|
| 28 |
+
MODEL_FILENAME = 'checkpoint_landmark_191116.pth'
|
| 29 |
+
|
| 30 |
+
NUM_LANDMARK = 24
|
| 31 |
+
CROP_SIZE = 128
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def parse_args() -> argparse.Namespace:
|
| 35 |
+
parser = argparse.ArgumentParser()
|
| 36 |
+
parser.add_argument('--device', type=str, default='cpu')
|
| 37 |
+
parser.add_argument('--theme', type=str)
|
| 38 |
+
parser.add_argument('--live', action='store_true')
|
| 39 |
+
parser.add_argument('--share', action='store_true')
|
| 40 |
+
parser.add_argument('--port', type=int)
|
| 41 |
+
parser.add_argument('--disable-queue',
|
| 42 |
+
dest='enable_queue',
|
| 43 |
+
action='store_false')
|
| 44 |
+
parser.add_argument('--allow-flagging', type=str, default='never')
|
| 45 |
+
parser.add_argument('--allow-screenshot', action='store_true')
|
| 46 |
+
return parser.parse_args()
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def load_sample_image_paths() -> list[pathlib.Path]:
|
| 50 |
+
image_dir = pathlib.Path('images')
|
| 51 |
+
if not image_dir.exists():
|
| 52 |
+
dataset_repo = 'hysts/sample-images-TADNE'
|
| 53 |
+
path = huggingface_hub.hf_hub_download(dataset_repo,
|
| 54 |
+
'images.tar.gz',
|
| 55 |
+
repo_type='dataset',
|
| 56 |
+
use_auth_token=TOKEN)
|
| 57 |
+
with tarfile.open(path) as f:
|
| 58 |
+
f.extractall()
|
| 59 |
+
return sorted(image_dir.glob('*'))
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def load_face_detector() -> cv2.CascadeClassifier:
|
| 63 |
+
url = 'https://raw.githubusercontent.com/nagadomi/lbpcascade_animeface/master/lbpcascade_animeface.xml'
|
| 64 |
+
path = pathlib.Path('lbpcascade_animeface.xml')
|
| 65 |
+
if not path.exists():
|
| 66 |
+
urllib.request.urlretrieve(url, path.as_posix())
|
| 67 |
+
return cv2.CascadeClassifier(path.as_posix())
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def load_landmark_detector(device: torch.device) -> torch.nn.Module:
|
| 71 |
+
path = huggingface_hub.hf_hub_download(MODEL_REPO,
|
| 72 |
+
MODEL_FILENAME,
|
| 73 |
+
use_auth_token=TOKEN)
|
| 74 |
+
model = CFA(output_channel_num=NUM_LANDMARK + 1, checkpoint_name=path)
|
| 75 |
+
model.to(device)
|
| 76 |
+
model.eval()
|
| 77 |
+
return model
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
@torch.inference_mode()
|
| 81 |
+
def detect(image, face_detector: cv2.CascadeClassifier, device: torch.device,
|
| 82 |
+
transform: Callable,
|
| 83 |
+
landmark_detector: torch.nn.Module) -> np.ndarray:
|
| 84 |
+
image = cv2.imread(image.name)
|
| 85 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 86 |
+
preds = face_detector.detectMultiScale(gray,
|
| 87 |
+
scaleFactor=1.1,
|
| 88 |
+
minNeighbors=5,
|
| 89 |
+
minSize=(24, 24))
|
| 90 |
+
|
| 91 |
+
image_h, image_w = image.shape[:2]
|
| 92 |
+
pil_image = PIL.Image.fromarray(image[:, :, ::-1].copy())
|
| 93 |
+
|
| 94 |
+
res = image.copy()
|
| 95 |
+
for x_orig, y_orig, w_orig, h_orig in preds:
|
| 96 |
+
|
| 97 |
+
x0 = round(max(x_orig - w_orig / 8, 0))
|
| 98 |
+
x1 = round(min(x_orig + w_orig * 9 / 8, image_w))
|
| 99 |
+
y0 = round(max(y_orig - h_orig / 4, 0))
|
| 100 |
+
y1 = y_orig + h_orig
|
| 101 |
+
w = x1 - x0
|
| 102 |
+
h = y1 - y0
|
| 103 |
+
|
| 104 |
+
temp = pil_image.crop((x0, y0, x1, y1))
|
| 105 |
+
temp = temp.resize((CROP_SIZE, CROP_SIZE), PIL.Image.BICUBIC)
|
| 106 |
+
data = transform(temp)
|
| 107 |
+
data = data.to(device).unsqueeze(0)
|
| 108 |
+
|
| 109 |
+
heatmaps = landmark_detector(data)
|
| 110 |
+
heatmaps = heatmaps[-1].cpu().numpy()[0]
|
| 111 |
+
|
| 112 |
+
cv2.rectangle(res, (x0, y0), (x1, y1), (0, 255, 0), 2)
|
| 113 |
+
|
| 114 |
+
for i in range(NUM_LANDMARK):
|
| 115 |
+
heatmap = cv2.resize(heatmaps[i], (CROP_SIZE, CROP_SIZE),
|
| 116 |
+
interpolation=cv2.INTER_CUBIC)
|
| 117 |
+
pty, ptx = np.unravel_index(np.argmax(heatmap), heatmap.shape)
|
| 118 |
+
pt_crop = np.round(np.array([ptx * w, pty * h]) /
|
| 119 |
+
CROP_SIZE).astype(int)
|
| 120 |
+
pt = np.array([x0, y0]) + pt_crop
|
| 121 |
+
cv2.circle(res, tuple(pt), 2, (0, 0, 255), cv2.FILLED)
|
| 122 |
+
|
| 123 |
+
res = cv2.cvtColor(res, cv2.COLOR_BGR2RGB)
|
| 124 |
+
return res
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
def main():
|
| 128 |
+
gr.close_all()
|
| 129 |
+
|
| 130 |
+
args = parse_args()
|
| 131 |
+
device = torch.device(args.device)
|
| 132 |
+
|
| 133 |
+
image_paths = load_sample_image_paths()
|
| 134 |
+
examples = [[path.as_posix()] for path in image_paths]
|
| 135 |
+
|
| 136 |
+
face_detector = load_face_detector()
|
| 137 |
+
landmark_detector = load_landmark_detector(device)
|
| 138 |
+
transform = T.Compose([
|
| 139 |
+
T.ToTensor(),
|
| 140 |
+
T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
|
| 141 |
+
])
|
| 142 |
+
|
| 143 |
+
func = functools.partial(detect,
|
| 144 |
+
face_detector=face_detector,
|
| 145 |
+
device=device,
|
| 146 |
+
transform=transform,
|
| 147 |
+
landmark_detector=landmark_detector)
|
| 148 |
+
func = functools.update_wrapper(func, detect)
|
| 149 |
+
|
| 150 |
+
repo_url = 'https://github.com/kanosawa/anime_face_landmark_detection'
|
| 151 |
+
title = 'kanosawa/anime_face_landmark_detection'
|
| 152 |
+
description = f'A demo for {repo_url}'
|
| 153 |
+
article = None
|
| 154 |
+
|
| 155 |
+
gr.Interface(
|
| 156 |
+
func,
|
| 157 |
+
gr.inputs.Image(type='file', label='Input'),
|
| 158 |
+
gr.outputs.Image(label='Output'),
|
| 159 |
+
theme=args.theme,
|
| 160 |
+
title=title,
|
| 161 |
+
description=description,
|
| 162 |
+
article=article,
|
| 163 |
+
examples=examples,
|
| 164 |
+
allow_screenshot=args.allow_screenshot,
|
| 165 |
+
allow_flagging=args.allow_flagging,
|
| 166 |
+
live=args.live,
|
| 167 |
+
).launch(
|
| 168 |
+
enable_queue=args.enable_queue,
|
| 169 |
+
server_port=args.port,
|
| 170 |
+
share=args.share,
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
if __name__ == '__main__':
|
| 175 |
+
main()
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
opencv-python-headless>=4.5.5.62
|
| 2 |
+
torch>=1.10.1
|
| 3 |
+
torchvision>=0.11.2
|