Initial commit
Browse files- .gitattributes +1 -0
- README.md +1 -1
- app.py +91 -0
- fold0.ckpt +3 -0
- fold1.ckpt +3 -0
- fold2.ckpt +3 -0
- requirements.txt +5 -0
.gitattributes
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 4 |
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 6 |
*.gz filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 1 |
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 5 |
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 6 |
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
*.gz filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
emoji: 💻
|
| 4 |
colorFrom: red
|
| 5 |
colorTo: blue
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Deep Learning Model for Pediatric Bone Age
|
| 3 |
emoji: 💻
|
| 4 |
colorFrom: red
|
| 5 |
colorTo: blue
|
app.py
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import timm
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def change_num_input_channels(model, in_channels=1):
|
| 8 |
+
"""
|
| 9 |
+
Assumes number of input channels in model is 3.
|
| 10 |
+
"""
|
| 11 |
+
for i, m in enumerate(model.modules()):
|
| 12 |
+
if isinstance(m, (nn.Conv2d,nn.Conv3d)) and m.in_channels == 3:
|
| 13 |
+
m.in_channels = in_channels
|
| 14 |
+
# First, sum across channels
|
| 15 |
+
W = m.weight.sum(1, keepdim=True)
|
| 16 |
+
# Then, divide by number of channels
|
| 17 |
+
W = W / in_channels
|
| 18 |
+
# Then, repeat by number of channels
|
| 19 |
+
size = [1] * W.ndim
|
| 20 |
+
size[1] = in_channels
|
| 21 |
+
W = W.repeat(size)
|
| 22 |
+
m.weight = nn.Parameter(W)
|
| 23 |
+
break
|
| 24 |
+
return model
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class Net2D(nn.Module):
|
| 28 |
+
|
| 29 |
+
def __init__(self, weights):
|
| 30 |
+
super().__init__()
|
| 31 |
+
self.backbone = timm.create_model("tf_efficientnetv2_s", pretrained=False, global_pool="", num_classes=0)
|
| 32 |
+
self.backbone = change_num_input_channels(self.backbone, 2)
|
| 33 |
+
self.pool_layer = nn.AdaptiveAvgPool2d(1)
|
| 34 |
+
self.dropout = nn.Dropout(0.2)
|
| 35 |
+
self.classifier = nn.Linear(1280, 1)
|
| 36 |
+
self.load_state_dict(weights)
|
| 37 |
+
|
| 38 |
+
def forward(self, x):
|
| 39 |
+
x = self.backbone(x)
|
| 40 |
+
x = self.pool_layer(x).view(x.size(0), -1)
|
| 41 |
+
x = self.dropout(x)
|
| 42 |
+
x = self.classifier(x)
|
| 43 |
+
return x[:, 0] if x.size(1) == 1 else x
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
class Ensemble(nn.Module):
|
| 47 |
+
|
| 48 |
+
def __init__(self, model_list):
|
| 49 |
+
super().__init__()
|
| 50 |
+
self.model_list = nn.ModuleList(model_list)
|
| 51 |
+
|
| 52 |
+
def forward(self, x):
|
| 53 |
+
return torch.stack([model(x) for model in self.model_list]).mean(0)
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
checkpoints = ["fold0.ckpt", "fold1.ckpt", "fold2.ckpt"]
|
| 57 |
+
weights = [torch.load(ckpt)["state_dict"] for ckpt in checkpoints]
|
| 58 |
+
weights = [{k.replace("model.", "") : v for k, v in wt.items()} for wt in weights]
|
| 59 |
+
models = [Net2D(wt) for wt in weights]
|
| 60 |
+
ensemble = Ensemble(models).eval()
|
| 61 |
+
|
| 62 |
+
def predict_bone_age(Radiograph, Sex):
|
| 63 |
+
img = torch.from_numpy(Radiograph)
|
| 64 |
+
img = img.unsqueeze(0).unsqueeze(0)
|
| 65 |
+
img = img / img.max()
|
| 66 |
+
img = img - 0.5
|
| 67 |
+
img = img * 2.0
|
| 68 |
+
if Sex == 1:
|
| 69 |
+
img = torch.cat([img, torch.zeros_like(img) + 1], dim=1)
|
| 70 |
+
else:
|
| 71 |
+
img = torch.cat([img, torch.zeros_like(img) - 1], dim=1)
|
| 72 |
+
with torch.no_grad():
|
| 73 |
+
bone_age = ensemble(img.float())[0].item()
|
| 74 |
+
return f"Estimated Bone Age: {int(bone_age)} years, {int(bone_age % int(bone_age) * 12)} months"
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
image = gr.Image(shape=(512, 512), image_mode="L")
|
| 78 |
+
sex = gr.Radio(["Male", "Female"], type="index")
|
| 79 |
+
label = gr.Label(show_label=True, label="Result")
|
| 80 |
+
|
| 81 |
+
demo = gr.Interface(
|
| 82 |
+
fn=predict_bone_age,
|
| 83 |
+
inputs=[image, sex],
|
| 84 |
+
outputs=label,
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
if __name__ == "__main__":
|
| 89 |
+
demo.launch()
|
| 90 |
+
|
| 91 |
+
|
fold0.ckpt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2db6d3fb26a05b916341574c83683017e4a04a1c0df8fda4a97ad2314b33f109
|
| 3 |
+
size 81642981
|
fold1.ckpt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8c806c2ccd21cb4f1d1102e86d8716ed67583f561d4eea6a1761ac4f9bf6a60b
|
| 3 |
+
size 81642981
|
fold2.ckpt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cabdc105bb4c3239d1a57ceaaca4306096a017763c1ec1d23adacf6d8c0713ab
|
| 3 |
+
size 81642981
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
numpy
|
| 2 |
+
timm
|
| 3 |
+
torch
|
| 4 |
+
https://gradio-main-build.s3.amazonaws.com/e30af8813c3d76329cf4869fa87a902b2075c8cd/gradio-3.8.2-py3-none-any.whl
|
| 5 |
+
|