Commit
Β·
6e9b62d
1
Parent(s):
680d6f0
Add demo code
Browse files- .gitattributes +1 -0
- Dockerfile +38 -0
- README.md +6 -6
- app.py +178 -0
- requirements.txt +8 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.tif filter=lfs diff=lfs merge=lfs -text
|
Dockerfile
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM ubuntu:22.04
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
RUN apt-get update && apt-get install --no-install-recommends -y \
|
| 5 |
+
build-essential \
|
| 6 |
+
python3.9 \
|
| 7 |
+
python3-pip \
|
| 8 |
+
git \
|
| 9 |
+
&& apt-get clean && rm -rf /var/lib/apt/lists/*
|
| 10 |
+
|
| 11 |
+
WORKDIR /code
|
| 12 |
+
|
| 13 |
+
COPY ./requirements.txt /code/requirements.txt
|
| 14 |
+
|
| 15 |
+
# Set up a new user named "user" with user ID 1000
|
| 16 |
+
RUN useradd -m -u 1000 user
|
| 17 |
+
# Switch to the "user" user
|
| 18 |
+
USER user
|
| 19 |
+
# Set home to the user's home directory
|
| 20 |
+
ENV HOME=/home/user \
|
| 21 |
+
PATH=/home/user/.local/bin:$PATH \
|
| 22 |
+
PYTHONPATH=$HOME/app \
|
| 23 |
+
PYTHONUNBUFFERED=1 \
|
| 24 |
+
GRADIO_ALLOW_FLAGGING=never \
|
| 25 |
+
GRADIO_NUM_PORTS=1 \
|
| 26 |
+
GRADIO_SERVER_NAME=0.0.0.0 \
|
| 27 |
+
GRADIO_THEME=huggingface \
|
| 28 |
+
SYSTEM=spaces
|
| 29 |
+
|
| 30 |
+
RUN pip3 install --no-cache-dir --upgrade -r /code/requirements.txt
|
| 31 |
+
|
| 32 |
+
# Set the working directory to the user's home directory
|
| 33 |
+
WORKDIR $HOME/app
|
| 34 |
+
|
| 35 |
+
# Copy the current directory contents into the container at $HOME/app setting the owner to the user
|
| 36 |
+
COPY --chown=user . $HOME/app
|
| 37 |
+
|
| 38 |
+
CMD ["python3", "app.py"]
|
README.md
CHANGED
|
@@ -1,14 +1,14 @@
|
|
| 1 |
---
|
| 2 |
-
title: Prithvi EO 2.0 Sen1Floods11
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 5.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
| 11 |
-
short_description: Prithvi EO 2.0
|
| 12 |
---
|
| 13 |
|
| 14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Prithvi EO 2.0 Sen1Floods11 Demo
|
| 3 |
+
emoji: π
|
| 4 |
+
colorFrom: indigo
|
| 5 |
+
colorTo: red
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 5.6.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
| 11 |
+
short_description: Prithvi EO 2.0 Sen1Floods11 flood segmentation demo
|
| 12 |
---
|
| 13 |
|
| 14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import os
|
| 3 |
+
import torch
|
| 4 |
+
import yaml
|
| 5 |
+
import numpy as np
|
| 6 |
+
import gradio as gr
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
from einops import rearrange
|
| 9 |
+
from functools import partial
|
| 10 |
+
from huggingface_hub import hf_hub_download
|
| 11 |
+
from terratorch.cli_tools import LightningInferenceModel
|
| 12 |
+
|
| 13 |
+
# pull files from hub
|
| 14 |
+
token = os.environ.get("HF_TOKEN", None)
|
| 15 |
+
config_path = hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-EO-2.0-300M-TL-Sen1Floods11",
|
| 16 |
+
filename="config.yaml", token=token)
|
| 17 |
+
checkpoint = hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-EO-2.0-300M-TL-Sen1Floods11",
|
| 18 |
+
filename='Prithvi-EO-V2-300M-TL-Sen1Floods11.pt', token=token)
|
| 19 |
+
model_inference = hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-EO-2.0-300M-TL-Sen1Floods11",
|
| 20 |
+
filename='inference.py', token=token)
|
| 21 |
+
os.system(f'cp {model_inference} .')
|
| 22 |
+
|
| 23 |
+
from inference import process_channel_group, _convert_np_uint8, load_example, run_model
|
| 24 |
+
|
| 25 |
+
def extract_rgb_imgs(input_img, pred_img, channels):
|
| 26 |
+
""" Wrapper function to save Geotiff images (original, reconstructed, masked) per timestamp.
|
| 27 |
+
Args:
|
| 28 |
+
input_img: input torch.Tensor with shape (C, H, W).
|
| 29 |
+
rec_img: reconstructed torch.Tensor with shape (C, T, H, W).
|
| 30 |
+
pred_img: mask torch.Tensor with shape (C, T, H, W).
|
| 31 |
+
channels: list of indices representing RGB channels.
|
| 32 |
+
mean: list of mean values for each band.
|
| 33 |
+
std: list of std values for each band.
|
| 34 |
+
output_dir: directory where to save outputs.
|
| 35 |
+
meta_data: list of dicts with geotiff meta info.
|
| 36 |
+
"""
|
| 37 |
+
rgb_orig_list = []
|
| 38 |
+
rgb_mask_list = []
|
| 39 |
+
rgb_pred_list = []
|
| 40 |
+
|
| 41 |
+
for t in range(input_img.shape[1]):
|
| 42 |
+
rgb_orig, rgb_pred = process_channel_group(orig_img=input_img[:, t, :, :],
|
| 43 |
+
new_img=rec_img[:, t, :, :],
|
| 44 |
+
channels=channels,
|
| 45 |
+
mean=mean,
|
| 46 |
+
std=std)
|
| 47 |
+
|
| 48 |
+
rgb_mask = mask_img[channels, t, :, :] * rgb_orig
|
| 49 |
+
|
| 50 |
+
# extract images
|
| 51 |
+
rgb_orig_list.append(_convert_np_uint8(rgb_orig).transpose(1, 2, 0))
|
| 52 |
+
rgb_mask_list.append(_convert_np_uint8(rgb_mask).transpose(1, 2, 0))
|
| 53 |
+
rgb_pred_list.append(_convert_np_uint8(rgb_pred).transpose(1, 2, 0))
|
| 54 |
+
|
| 55 |
+
# Add white dummy image values for missing timestamps
|
| 56 |
+
dummy = np.ones((20, 20), dtype=np.uint8) * 255
|
| 57 |
+
num_dummies = 4 - len(rgb_orig_list)
|
| 58 |
+
if num_dummies:
|
| 59 |
+
rgb_orig_list.extend([dummy] * num_dummies)
|
| 60 |
+
rgb_mask_list.extend([dummy] * num_dummies)
|
| 61 |
+
rgb_pred_list.extend([dummy] * num_dummies)
|
| 62 |
+
|
| 63 |
+
outputs = rgb_orig_list + rgb_mask_list + rgb_pred_list
|
| 64 |
+
|
| 65 |
+
return outputs
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def predict_on_images(data_file: str | Path, config_path: str, checkpoint: str):
|
| 69 |
+
try:
|
| 70 |
+
data_file = data_file.name
|
| 71 |
+
print('Path extracted from example')
|
| 72 |
+
except:
|
| 73 |
+
print('Files submitted through UI')
|
| 74 |
+
|
| 75 |
+
# Get parameters --------
|
| 76 |
+
print('This is the printout', data_file)
|
| 77 |
+
|
| 78 |
+
with open(config_path, "r") as f:
|
| 79 |
+
config_dict = yaml.safe_load(f)
|
| 80 |
+
|
| 81 |
+
# Load model ---------------------------------------------------------------------------------
|
| 82 |
+
|
| 83 |
+
lightning_model = LightningInferenceModel.from_config(config_path, checkpoint)
|
| 84 |
+
img_size = 256 # Size of Sen1Floods11
|
| 85 |
+
|
| 86 |
+
# Loading data ---------------------------------------------------------------------------------
|
| 87 |
+
|
| 88 |
+
input_data, temporal_coords, location_coords, meta_data = load_example(file_paths=[data_file])
|
| 89 |
+
|
| 90 |
+
if input_data.shape[1] == 6:
|
| 91 |
+
pass
|
| 92 |
+
elif input_data.shape[1] == 13:
|
| 93 |
+
input_data = input_data[:, [1,2,3,8,11,12], ...]
|
| 94 |
+
else:
|
| 95 |
+
raise Exception(f'Input data has {input_data.shape[1]} channels. Expect either 6 Prithvi channels or 13 S2L1C channels.')
|
| 96 |
+
|
| 97 |
+
if input_data.mean() > 1:
|
| 98 |
+
input_data = input_data / 10000 # Convert to range 0-1
|
| 99 |
+
|
| 100 |
+
# Running model --------------------------------------------------------------------------------
|
| 101 |
+
|
| 102 |
+
lightning_model.model.eval()
|
| 103 |
+
|
| 104 |
+
channels = [config_dict['data']['init_args']['bands'].index(b) for b in ["RED", "GREEN", "BLUE"]] # BGR -> RGB
|
| 105 |
+
|
| 106 |
+
pred = run_model(input_data, temporal_coords, location_coords,
|
| 107 |
+
lightning_model.model, lightning_model.datamodule, img_size)
|
| 108 |
+
|
| 109 |
+
if input_data.mean() < 1:
|
| 110 |
+
input_data = input_data * 10000 # Scale to 0-10000
|
| 111 |
+
|
| 112 |
+
# Extract RGB images for display
|
| 113 |
+
rgb_orig = process_channel_group(
|
| 114 |
+
orig_img=torch.Tensor(input_data[0, :, 0, ...]),
|
| 115 |
+
channels=channels,
|
| 116 |
+
)
|
| 117 |
+
out_rgb_orig = _convert_np_uint8(rgb_orig).transpose(1, 2, 0)
|
| 118 |
+
out_pred_rgb = _convert_np_uint8(pred).repeat(3, axis=0).transpose(1, 2, 0)
|
| 119 |
+
|
| 120 |
+
pred[pred == 0.] = np.nan
|
| 121 |
+
img_pred = rgb_orig * 0.6 + pred * 0.4
|
| 122 |
+
img_pred[img_pred.isnan()] = rgb_orig[img_pred.isnan()]
|
| 123 |
+
|
| 124 |
+
out_img_pred = _convert_np_uint8(img_pred).transpose(1, 2, 0)
|
| 125 |
+
|
| 126 |
+
outputs = [out_rgb_orig] + [out_pred_rgb] + [out_img_pred]
|
| 127 |
+
|
| 128 |
+
print("Done!")
|
| 129 |
+
|
| 130 |
+
return outputs
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
run_inference = partial(predict_on_images, config_path=config_path, checkpoint=checkpoint)
|
| 134 |
+
|
| 135 |
+
with gr.Blocks() as demo:
|
| 136 |
+
gr.Markdown(value='# Prithvi-EO-2.0 Sen1Floods11 Demo')
|
| 137 |
+
gr.Markdown(value='''
|
| 138 |
+
Prithvi-EO-2.0 is the second generation EO foundation model developed by the IBM and NASA team.
|
| 139 |
+
This demo showcases the fine-tuned Prithvi-EO-2.0-300M-TL model to detect water using Sentinel 2 imagery from on the [sen1floods11 dataset](https://github.com/cloudtostreet/Sen1Floods11). More details can be found [here](https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-300M-TL-Sen1Floods11).\n
|
| 140 |
+
|
| 141 |
+
The user needs to provide a Sentinel-2 L1C image with either all the 13 bands or the six Prithvi bands (Blue, Green, Red, Narrow NIR, SWIR, SWIR 2). The demo code selects the required bands.
|
| 142 |
+
We recommend submitting images of 500 to ~1000 pixels for faster processing time. Images bigger than 256x256 are processed using a sliding window approach which can lead to artefacts between patches.\n
|
| 143 |
+
Optionally, the location information is extracted from the tif files while the temporal information can be provided in the filename in the format `<date>T<time>` or `<year><julian day>T<time>` (HLS format).
|
| 144 |
+
Some example images are provided at the end of this page.
|
| 145 |
+
''')
|
| 146 |
+
with gr.Row():
|
| 147 |
+
with gr.Column():
|
| 148 |
+
inp_file = gr.File(elem_id='file')
|
| 149 |
+
# inp_slider = gr.Slider(0, 100, value=50, label="Mask ratio", info="Choose ratio of masking between 0 and 100", elem_id='slider'),
|
| 150 |
+
btn = gr.Button("Submit")
|
| 151 |
+
with gr.Row():
|
| 152 |
+
gr.Markdown(value='## Input image')
|
| 153 |
+
gr.Markdown(value='## Prediction*')
|
| 154 |
+
gr.Markdown(value='## Overlay')
|
| 155 |
+
|
| 156 |
+
with gr.Row():
|
| 157 |
+
original = gr.Image(image_mode='RGB', show_label=False, show_fullscreen_button=False)
|
| 158 |
+
predicted = gr.Image(image_mode='RGB', show_label=False, show_fullscreen_button=False)
|
| 159 |
+
overlay = gr.Image(image_mode='RGB', show_label=False, show_fullscreen_button=False)
|
| 160 |
+
|
| 161 |
+
gr.Markdown(value='\* White = flood; Black = no flood')
|
| 162 |
+
|
| 163 |
+
btn.click(fn=run_inference,
|
| 164 |
+
inputs=inp_file,
|
| 165 |
+
outputs=[original] + [predicted] + [overlay])
|
| 166 |
+
|
| 167 |
+
with gr.Row():
|
| 168 |
+
gr.Examples(examples=[
|
| 169 |
+
os.path.join(os.path.dirname(__file__), "examples/India_900498_S2Hand.tif"),
|
| 170 |
+
os.path.join(os.path.dirname(__file__), "examples/Spain_7370579_S2Hand.tif"),
|
| 171 |
+
os.path.join(os.path.dirname(__file__), "examples/USA_430764_S2Hand.tif")],
|
| 172 |
+
inputs=inp_file,
|
| 173 |
+
outputs=[original] + [predicted] + [overlay],
|
| 174 |
+
fn=run_inference,
|
| 175 |
+
cache_examples=True
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
demo.launch() # share=True, ssr_mode=False
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
torchvision
|
| 3 |
+
timm
|
| 4 |
+
rasterio
|
| 5 |
+
einops
|
| 6 |
+
huggingface_hub
|
| 7 |
+
gradio
|
| 8 |
+
git+https://github.com/IBM/terratorch.git
|