Fabrice-TIERCELIN commited on
Commit
151d8f9
·
verified ·
1 Parent(s): 33af124

This Pull Request also extends a video & optimizes time & VRAM

Browse files

This PR:
1. Extends a video,
1. Optimizes time & VRAM,
1. Displays generation time,
1. Chooses resolution,
1. Adds examples,
1. Handles prompts on period

It removes the inpaint that does not work.

Click on _Merge_ to add those features.

Files changed (1) hide show
  1. app.py +1185 -280
app.py CHANGED
@@ -4,14 +4,32 @@ import os
4
 
5
  os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
6
 
 
 
 
 
7
  import gradio as gr
8
  import torch
9
  import traceback
10
  import einops
11
  import safetensors.torch as sf
12
  import numpy as np
 
 
13
  import math
14
- import spaces
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
  from PIL import Image
17
  from diffusers import AutoencoderKLHunyuanVideo
@@ -20,128 +38,293 @@ from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode
20
  from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp
21
  from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
22
  from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
23
- from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete
 
24
  from diffusers_helper.thread_utils import AsyncStream, async_run
25
  from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
26
  from transformers import SiglipImageProcessor, SiglipVisionModel
27
  from diffusers_helper.clip_vision import hf_clip_vision_encode
28
  from diffusers_helper.bucket_tools import find_nearest_bucket
 
 
29
 
 
30
 
31
- free_mem_gb = get_cuda_free_memory_gb(gpu)
32
- high_vram = free_mem_gb > 60
33
 
34
- print(f'Free VRAM {free_mem_gb} GB')
35
- print(f'High-VRAM Mode: {high_vram}')
 
36
 
37
- text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu()
38
- text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu()
39
- tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
40
- tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
41
- vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu()
42
-
43
- feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
44
- image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu()
45
-
46
- transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePack_F1_I2V_HY_20250503', torch_dtype=torch.bfloat16).cpu()
47
-
48
- vae.eval()
49
- text_encoder.eval()
50
- text_encoder_2.eval()
51
- image_encoder.eval()
52
- transformer.eval()
53
-
54
- if not high_vram:
55
- vae.enable_slicing()
56
- vae.enable_tiling()
57
-
58
- transformer.high_quality_fp32_output_for_inference = True
59
- print('transformer.high_quality_fp32_output_for_inference = True')
60
-
61
- transformer.to(dtype=torch.bfloat16)
62
- vae.to(dtype=torch.float16)
63
- image_encoder.to(dtype=torch.float16)
64
- text_encoder.to(dtype=torch.float16)
65
- text_encoder_2.to(dtype=torch.float16)
66
-
67
- vae.requires_grad_(False)
68
- text_encoder.requires_grad_(False)
69
- text_encoder_2.requires_grad_(False)
70
- image_encoder.requires_grad_(False)
71
- transformer.requires_grad_(False)
72
-
73
- if not high_vram:
74
- # DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster
75
- DynamicSwapInstaller.install_model(transformer, device=gpu)
76
- DynamicSwapInstaller.install_model(text_encoder, device=gpu)
77
- else:
78
- text_encoder.to(gpu)
79
- text_encoder_2.to(gpu)
80
- image_encoder.to(gpu)
81
- vae.to(gpu)
82
- transformer.to(gpu)
 
 
 
83
 
84
  stream = AsyncStream()
85
 
86
  outputs_folder = './outputs/'
87
  os.makedirs(outputs_folder, exist_ok=True)
88
 
89
- examples = [
90
- ["img_examples/1.png", "The girl dances gracefully, with clear movements, full of charm.",],
91
- ["img_examples/2.jpg", "The man dances flamboyantly, swinging his hips and striking bold poses with dramatic flair."],
92
- ["img_examples/3.png", "The woman dances elegantly among the blossoms, spinning slowly with flowing sleeves and graceful hand movements."],
93
- ]
94
-
95
- def generate_examples(input_image, prompt):
96
-
97
- t2v=False
98
- n_prompt=""
99
- seed=31337
100
- total_second_length=5
101
- latent_window_size=9
102
- steps=25
103
- cfg=1.0
104
- gs=10.0
105
- rs=0.0
106
- gpu_memory_preservation=6
107
- use_teacache=True
108
- mp4_crf=16
109
-
110
- global stream
111
-
112
- # assert input_image is not None, 'No input image!'
113
- if t2v:
114
- default_height, default_width = 640, 640
115
- input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255
116
- print("No input image provided. Using a blank white image.")
117
-
118
- yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
119
 
120
- stream = AsyncStream()
121
-
122
- async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf)
123
-
124
- output_filename = None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125
 
126
- while True:
127
- flag, data = stream.output_queue.next()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128
 
129
- if flag == 'file':
130
- output_filename = data
131
- yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True)
 
 
132
 
133
- if flag == 'progress':
134
- preview, desc, html = data
135
- yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
 
136
 
137
- if flag == 'end':
138
- yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
139
- break
140
 
 
 
 
 
 
141
 
142
-
143
- @torch.no_grad()
144
- def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf):
145
  total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
146
  total_latent_sections = int(max(round(total_latent_sections), 1))
147
 
@@ -164,54 +347,50 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
164
  fake_diffusers_current_device(text_encoder, gpu) # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode.
165
  load_model_as_complete(text_encoder_2, target_device=gpu)
166
 
167
- llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
168
 
169
- if cfg == 1:
170
- llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
171
- else:
172
- llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
173
-
174
- llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
175
- llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
176
 
177
  # Processing input image
178
 
179
  stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
180
 
181
  H, W, C = input_image.shape
182
- height, width = find_nearest_bucket(H, W, resolution=640)
183
- input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
184
-
185
- Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
186
-
187
- input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
188
- input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
189
-
190
- # VAE encoding
191
-
192
- stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
193
-
194
- if not high_vram:
195
- load_model_as_complete(vae, target_device=gpu)
196
-
197
- start_latent = vae_encode(input_image_pt, vae)
198
-
199
- # CLIP Vision
200
-
201
- stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
202
-
203
- if not high_vram:
204
- load_model_as_complete(image_encoder, target_device=gpu)
 
 
205
 
206
- image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
207
- image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
 
 
 
208
 
209
  # Dtype
210
 
211
- llama_vec = llama_vec.to(transformer.dtype)
212
- llama_vec_n = llama_vec_n.to(transformer.dtype)
213
- clip_l_pooler = clip_l_pooler.to(transformer.dtype)
214
- clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
215
  image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
216
 
217
  # Sampling
@@ -221,51 +400,102 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
221
  rnd = torch.Generator("cpu").manual_seed(seed)
222
 
223
  history_latents = torch.zeros(size=(1, 16, 16 + 2 + 1, height // 8, width // 8), dtype=torch.float32).cpu()
 
224
  history_pixels = None
225
 
226
- history_latents = torch.cat([history_latents, start_latent.to(history_latents)], dim=2)
227
  total_generated_latent_frames = 1
228
 
229
- for section_index in range(total_latent_sections):
230
- if stream.input_queue.top() == 'end':
231
- stream.output_queue.push(('end', None))
232
- return
233
-
234
- print(f'section_index = {section_index}, total_latent_sections = {total_latent_sections}')
235
-
236
- if not high_vram:
237
- unload_complete_models()
238
- move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
239
-
240
- if use_teacache:
241
- transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
242
- else:
243
- transformer.initialize_teacache(enable_teacache=False)
244
-
245
  def callback(d):
246
  preview = d['denoised']
247
  preview = vae_decode_fake(preview)
248
-
249
  preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
250
  preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
251
-
252
  if stream.input_queue.top() == 'end':
253
  stream.output_queue.push(('end', None))
254
  raise KeyboardInterrupt('User ends the task.')
255
-
256
  current_step = d['i'] + 1
257
  percentage = int(100.0 * current_step / steps)
258
  hint = f'Sampling {current_step}/{steps}'
259
- desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30). The video is being extended now ...'
260
  stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
261
  return
 
 
 
262
 
263
- indices = torch.arange(0, sum([1, 16, 2, 1, latent_window_size])).unsqueeze(0)
 
 
 
 
264
  clean_latent_indices_start, clean_latent_4x_indices, clean_latent_2x_indices, clean_latent_1x_indices, latent_indices = indices.split([1, 16, 2, 1, latent_window_size], dim=1)
265
  clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)
266
 
267
- clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[:, :, -sum([16, 2, 1]):, :, :].split([16, 2, 1], dim=2)
268
- clean_latents = torch.cat([start_latent.to(history_latents), clean_latents_1x], dim=2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
269
 
270
  generated_latents = sample_hunyuan(
271
  transformer=transformer,
@@ -298,34 +528,276 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
298
  callback=callback,
299
  )
300
 
301
- total_generated_latent_frames += int(generated_latents.shape[2])
302
- history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)
 
303
 
304
- if not high_vram:
305
- offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
306
- load_model_as_complete(vae, target_device=gpu)
 
307
 
308
- real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :]
 
309
 
310
- if history_pixels is None:
311
- history_pixels = vae_decode(real_history_latents, vae).cpu()
312
- else:
313
- section_latent_frames = latent_window_size * 2
314
- overlapped_frames = latent_window_size * 4 - 3
315
 
316
- current_pixels = vae_decode(real_history_latents[:, :, -section_latent_frames:], vae).cpu()
317
- history_pixels = soft_append_bcthw(history_pixels, current_pixels, overlapped_frames)
 
 
318
 
319
- if not high_vram:
320
- unload_complete_models()
321
 
322
- output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
 
 
 
 
 
 
323
 
324
- save_bcthw_as_mp4(history_pixels, output_filename, fps=30, crf=mp4_crf)
 
 
 
 
 
 
 
 
 
 
 
 
325
 
326
- print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
327
 
328
- stream.output_queue.push(('file', output_filename))
329
  except:
330
  traceback.print_exc()
331
 
@@ -337,62 +809,131 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
337
  stream.output_queue.push(('end', None))
338
  return
339
 
340
- def get_duration(input_image, prompt, t2v, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf):
341
- return total_second_length * 60
342
 
 
343
  @spaces.GPU(duration=get_duration)
344
- def process(input_image, prompt,
345
- t2v=False,
346
- n_prompt="",
347
- seed=31337,
348
- total_second_length=5,
349
- latent_window_size=9,
350
- steps=25,
351
- cfg=1.0,
352
- gs=10.0,
353
- rs=0.0,
354
- gpu_memory_preservation=6,
355
- use_teacache=True,
 
 
 
 
356
  mp4_crf=16
357
  ):
 
358
  global stream
359
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
360
  # assert input_image is not None, 'No input image!'
361
- if t2v:
362
  default_height, default_width = 640, 640
363
  input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255
364
  print("No input image provided. Using a blank white image.")
365
- else:
366
- composite_rgba_uint8 = input_image["composite"]
367
-
368
- # rgb_uint8 will be (H, W, 3), dtype uint8
369
- rgb_uint8 = composite_rgba_uint8[:, :, :3]
370
- # mask_uint8 will be (H, W), dtype uint8
371
- mask_uint8 = composite_rgba_uint8[:, :, 3]
372
-
373
- # Create background
374
- h, w = rgb_uint8.shape[:2]
375
- # White background, (H, W, 3), dtype uint8
376
- background_uint8 = np.full((h, w, 3), 255, dtype=np.uint8)
377
-
378
- # Normalize mask to range [0.0, 1.0].
379
- alpha_normalized_float32 = mask_uint8.astype(np.float32) / 255.0
380
-
381
- # Expand alpha to 3 channels to match RGB images for broadcasting.
382
- # alpha_mask_float32 will have shape (H, W, 3)
383
- alpha_mask_float32 = np.stack([alpha_normalized_float32] * 3, axis=2)
384
-
385
- # alpha blending
386
- blended_image_float32 = rgb_uint8.astype(np.float32) * alpha_mask_float32 + \
387
- background_uint8.astype(np.float32) * (1.0 - alpha_mask_float32)
388
-
389
- input_image = np.clip(blended_image_float32, 0, 255).astype(np.uint8)
390
-
391
- yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
392
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
393
  stream = AsyncStream()
394
 
395
- async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf)
 
396
 
397
  output_filename = None
398
 
@@ -401,88 +942,452 @@ def process(input_image, prompt,
401
 
402
  if flag == 'file':
403
  output_filename = data
404
- yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True)
405
 
406
  if flag == 'progress':
407
  preview, desc, html = data
408
- yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
409
 
410
  if flag == 'end':
411
- yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
 
 
 
 
 
 
 
 
 
 
 
412
  break
413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
414
 
415
  def end_process():
416
  stream.input_queue.push('end')
417
 
 
 
 
 
 
 
418
 
419
- quick_prompts = [
420
- 'The girl dances gracefully, with clear movements, full of charm.',
421
- 'A character doing some simple body movements.',
422
- ]
423
- quick_prompts = [[x] for x in quick_prompts]
424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
425
 
426
  css = make_progress_bar_css()
427
- block = gr.Blocks(css=css).queue()
428
  with block:
429
- gr.Markdown('# FramePack-F1')
430
- gr.Markdown(f"""### Video diffusion, but feels like image diffusion
431
- *FramePack F1 - a FramePack model that only predicts future frames from history frames*
432
- ### *beta* FramePack Fill 🖋️- draw a mask over the input image to inpaint the video output
433
- adapted from the officical code repo [FramePack](https://github.com/lllyasviel/FramePack) by [lllyasviel](lllyasviel/FramePack_F1_I2V_HY_20250503) and [FramePack Studio](https://github.com/colinurbs/FramePack-Studio) 🙌🏻
 
 
434
  """)
 
 
435
  with gr.Row():
436
  with gr.Column():
437
- input_image = gr.ImageEditor(type="numpy", label="Image", height=320, brush=gr.Brush(colors=["#ffffff"]))
438
- prompt = gr.Textbox(label="Prompt", value='')
439
- t2v = gr.Checkbox(label="do text-to-video", value=False)
440
- example_quick_prompts = gr.Dataset(samples=quick_prompts, label='Quick List', samples_per_page=1000, components=[prompt])
441
- example_quick_prompts.click(lambda x: x[0], inputs=[example_quick_prompts], outputs=prompt, show_progress=False, queue=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
442
 
443
  with gr.Row():
444
- start_button = gr.Button(value="Start Generation")
445
- end_button = gr.Button(value="End Generation", interactive=False)
 
446
 
447
- total_second_length = gr.Slider(label="Total Video Length (Seconds)", minimum=1, maximum=25, value=2, step=0.1)
448
- with gr.Group():
449
- with gr.Accordion("Advanced settings", open=False):
450
- use_teacache = gr.Checkbox(label='Use TeaCache', value=True, info='Faster speed, but often makes hands and fingers slightly worse.')
451
-
452
- n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False) # Not used
453
- seed = gr.Number(label="Seed", value=31337, precision=0)
454
-
455
-
456
- latent_window_size = gr.Slider(label="Latent Window Size", minimum=1, maximum=33, value=9, step=1, visible=False) # Should not change
457
- steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1, info='Changing this value is not recommended.')
458
-
459
- cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, visible=False) # Should not change
460
- gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=10.0, step=0.01, info='Changing this value is not recommended.')
461
- rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01, visible=False) # Should not change
462
-
463
- gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB) (larger means slower)", minimum=6, maximum=128, value=6, step=0.1, info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed.")
464
-
465
- mp4_crf = gr.Slider(label="MP4 Compression", minimum=0, maximum=100, value=16, step=1, info="Lower means better quality. 0 is uncompressed. Change to 16 if you get black outputs. ")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
466
 
467
  with gr.Column():
 
 
468
  preview_image = gr.Image(label="Next Latents", height=200, visible=False)
469
- result_video = gr.Video(label="Finished Frames", autoplay=True, show_share_button=False, height=512, loop=True)
470
  progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
471
  progress_bar = gr.HTML('', elem_classes='no-generating-animation')
472
 
473
- gr.HTML('<div style="text-align:center; margin-top:20px;">Share your results and find ideas at the <a href="https://x.com/search?q=framepack&f=live" target="_blank">FramePack Twitter (X) thread</a></div>')
474
-
475
- ips = [input_image, prompt, t2v, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf]
476
- start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
477
  end_button.click(fn=end_process)
478
 
479
- # gr.Examples(
480
- # examples,
481
- # inputs=[input_image, prompt],
482
- # outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button],
483
- # fn=generate_examples,
484
- # cache_examples=True
485
- # )
486
-
487
-
488
- block.launch(share=True, mcp_server=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
  os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
6
 
7
+ try:
8
+ import spaces
9
+ except:
10
+ print("Not on HuggingFace")
11
  import gradio as gr
12
  import torch
13
  import traceback
14
  import einops
15
  import safetensors.torch as sf
16
  import numpy as np
17
+ import random
18
+ import time
19
  import math
20
+ # 20250506 pftq: Added for video input loading
21
+ import decord
22
+ # 20250506 pftq: Added for progress bars in video_encode
23
+ from tqdm import tqdm
24
+ # 20250506 pftq: Normalize file paths for Windows compatibility
25
+ import pathlib
26
+ # 20250506 pftq: for easier to read timestamp
27
+ from datetime import datetime
28
+ # 20250508 pftq: for saving prompt to mp4 comments metadata
29
+ import imageio_ffmpeg
30
+ import tempfile
31
+ import shutil
32
+ import subprocess
33
 
34
  from PIL import Image
35
  from diffusers import AutoencoderKLHunyuanVideo
 
38
  from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp
39
  from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
40
  from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
41
+ if torch.cuda.device_count() > 0:
42
+ from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete
43
  from diffusers_helper.thread_utils import AsyncStream, async_run
44
  from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
45
  from transformers import SiglipImageProcessor, SiglipVisionModel
46
  from diffusers_helper.clip_vision import hf_clip_vision_encode
47
  from diffusers_helper.bucket_tools import find_nearest_bucket
48
+ from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, HunyuanVideoTransformer3DModel, HunyuanVideoPipeline
49
+ import pillow_heif
50
 
51
+ pillow_heif.register_heif_opener()
52
 
53
+ high_vram = False
54
+ free_mem_gb = 0
55
 
56
+ if torch.cuda.device_count() > 0:
57
+ free_mem_gb = get_cuda_free_memory_gb(gpu)
58
+ high_vram = free_mem_gb > 60
59
 
60
+ print(f'Free VRAM {free_mem_gb} GB')
61
+ print(f'High-VRAM Mode: {high_vram}')
62
+
63
+ text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu()
64
+ text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu()
65
+ tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
66
+ tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
67
+ vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu()
68
+
69
+ feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
70
+ image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu()
71
+
72
+ transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePack_F1_I2V_HY_20250503', torch_dtype=torch.bfloat16).cpu()
73
+
74
+ vae.eval()
75
+ text_encoder.eval()
76
+ text_encoder_2.eval()
77
+ image_encoder.eval()
78
+ transformer.eval()
79
+
80
+ if not high_vram:
81
+ vae.enable_slicing()
82
+ vae.enable_tiling()
83
+
84
+ transformer.high_quality_fp32_output_for_inference = True
85
+ print('transformer.high_quality_fp32_output_for_inference = True')
86
+
87
+ transformer.to(dtype=torch.bfloat16)
88
+ vae.to(dtype=torch.float16)
89
+ image_encoder.to(dtype=torch.float16)
90
+ text_encoder.to(dtype=torch.float16)
91
+ text_encoder_2.to(dtype=torch.float16)
92
+
93
+ vae.requires_grad_(False)
94
+ text_encoder.requires_grad_(False)
95
+ text_encoder_2.requires_grad_(False)
96
+ image_encoder.requires_grad_(False)
97
+ transformer.requires_grad_(False)
98
+
99
+ if not high_vram:
100
+ # DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster
101
+ DynamicSwapInstaller.install_model(transformer, device=gpu)
102
+ DynamicSwapInstaller.install_model(text_encoder, device=gpu)
103
+ else:
104
+ text_encoder.to(gpu)
105
+ text_encoder_2.to(gpu)
106
+ image_encoder.to(gpu)
107
+ vae.to(gpu)
108
+ transformer.to(gpu)
109
 
110
  stream = AsyncStream()
111
 
112
  outputs_folder = './outputs/'
113
  os.makedirs(outputs_folder, exist_ok=True)
114
 
115
+ default_local_storage = {
116
+ "generation-mode": "image",
117
+ }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118
 
119
+ @torch.no_grad()
120
+ def video_encode(video_path, resolution, no_resize, vae, vae_batch_size=16, device="cuda", width=None, height=None):
121
+ """
122
+ Encode a video into latent representations using the VAE.
123
+
124
+ Args:
125
+ video_path: Path to the input video file.
126
+ vae: AutoencoderKLHunyuanVideo model.
127
+ height, width: Target resolution for resizing frames.
128
+ vae_batch_size: Number of frames to process per batch.
129
+ device: Device for computation (e.g., "cuda").
130
+
131
+ Returns:
132
+ start_latent: Latent of the first frame (for compatibility with original code).
133
+ input_image_np: First frame as numpy array (for CLIP vision encoding).
134
+ history_latents: Latents of all frames (shape: [1, channels, frames, height//8, width//8]).
135
+ fps: Frames per second of the input video.
136
+ """
137
+ # 20250506 pftq: Normalize video path for Windows compatibility
138
+ video_path = str(pathlib.Path(video_path).resolve())
139
+ print(f"Processing video: {video_path}")
140
+
141
+ # 20250506 pftq: Check CUDA availability and fallback to CPU if needed
142
+ if device == "cuda" and not torch.cuda.is_available():
143
+ print("CUDA is not available, falling back to CPU")
144
+ device = "cpu"
145
 
146
+ try:
147
+ # 20250506 pftq: Load video and get FPS
148
+ print("Initializing VideoReader...")
149
+ vr = decord.VideoReader(video_path)
150
+ fps = vr.get_avg_fps() # Get input video FPS
151
+ num_real_frames = len(vr)
152
+ print(f"Video loaded: {num_real_frames} frames, FPS: {fps}")
153
+
154
+ # Truncate to nearest latent size (multiple of 4)
155
+ latent_size_factor = 4
156
+ num_frames = (num_real_frames // latent_size_factor) * latent_size_factor
157
+ if num_frames != num_real_frames:
158
+ print(f"Truncating video from {num_real_frames} to {num_frames} frames for latent size compatibility")
159
+ num_real_frames = num_frames
160
+
161
+ # 20250506 pftq: Read frames
162
+ print("Reading video frames...")
163
+ frames = vr.get_batch(range(num_real_frames)).asnumpy() # Shape: (num_real_frames, height, width, channels)
164
+ print(f"Frames read: {frames.shape}")
165
+
166
+ # 20250506 pftq: Get native video resolution
167
+ native_height, native_width = frames.shape[1], frames.shape[2]
168
+ print(f"Native video resolution: {native_width}x{native_height}")
169
+
170
+ # 20250506 pftq: Use native resolution if height/width not specified, otherwise use provided values
171
+ target_height = native_height if height is None else height
172
+ target_width = native_width if width is None else width
173
+
174
+ # 20250506 pftq: Adjust to nearest bucket for model compatibility
175
+ if not no_resize:
176
+ target_height, target_width = find_nearest_bucket(target_height, target_width, resolution=resolution)
177
+ print(f"Adjusted resolution: {target_width}x{target_height}")
178
+ else:
179
+ print(f"Using native resolution without resizing: {target_width}x{target_height}")
180
+
181
+ # 20250506 pftq: Preprocess frames to match original image processing
182
+ processed_frames = []
183
+ for i, frame in enumerate(frames):
184
+ #print(f"Preprocessing frame {i+1}/{num_frames}")
185
+ frame_np = resize_and_center_crop(frame, target_width=target_width, target_height=target_height)
186
+ processed_frames.append(frame_np)
187
+ processed_frames = np.stack(processed_frames) # Shape: (num_real_frames, height, width, channels)
188
+ print(f"Frames preprocessed: {processed_frames.shape}")
189
+
190
+ # 20250506 pftq: Save first frame for CLIP vision encoding
191
+ input_image_np = processed_frames[0]
192
+
193
+ # 20250506 pftq: Convert to tensor and normalize to [-1, 1]
194
+ print("Converting frames to tensor...")
195
+ frames_pt = torch.from_numpy(processed_frames).float() / 127.5 - 1
196
+ frames_pt = frames_pt.permute(0, 3, 1, 2) # Shape: (num_real_frames, channels, height, width)
197
+ frames_pt = frames_pt.unsqueeze(0) # Shape: (1, num_real_frames, channels, height, width)
198
+ frames_pt = frames_pt.permute(0, 2, 1, 3, 4) # Shape: (1, channels, num_real_frames, height, width)
199
+ print(f"Tensor shape: {frames_pt.shape}")
200
+
201
+ # 20250507 pftq: Save pixel frames for use in worker
202
+ input_video_pixels = frames_pt.cpu()
203
+
204
+ # 20250506 pftq: Move to device
205
+ print(f"Moving tensor to device: {device}")
206
+ frames_pt = frames_pt.to(device)
207
+ print("Tensor moved to device")
208
+
209
+ # 20250506 pftq: Move VAE to device
210
+ print(f"Moving VAE to device: {device}")
211
+ vae.to(device)
212
+ print("VAE moved to device")
213
+
214
+ # 20250506 pftq: Encode frames in batches
215
+ print(f"Encoding input video frames in VAE batch size {vae_batch_size} (reduce if memory issues here or if forcing video resolution)")
216
+ latents = []
217
+ vae.eval()
218
+ with torch.no_grad():
219
+ for i in tqdm(range(0, frames_pt.shape[2], vae_batch_size), desc="Encoding video frames", mininterval=0.1):
220
+ #print(f"Encoding batch {i//vae_batch_size + 1}: frames {i} to {min(i + vae_batch_size, frames_pt.shape[2])}")
221
+ batch = frames_pt[:, :, i:i + vae_batch_size] # Shape: (1, channels, batch_size, height, width)
222
+ try:
223
+ # 20250506 pftq: Log GPU memory before encoding
224
+ if device == "cuda":
225
+ free_mem = torch.cuda.memory_allocated() / 1024**3
226
+ #print(f"GPU memory before encoding: {free_mem:.2f} GB")
227
+ batch_latent = vae_encode(batch, vae)
228
+ # 20250506 pftq: Synchronize CUDA to catch issues
229
+ if device == "cuda":
230
+ torch.cuda.synchronize()
231
+ #print(f"GPU memory after encoding: {torch.cuda.memory_allocated() / 1024**3:.2f} GB")
232
+ latents.append(batch_latent)
233
+ #print(f"Batch encoded, latent shape: {batch_latent.shape}")
234
+ except RuntimeError as e:
235
+ print(f"Error during VAE encoding: {str(e)}")
236
+ if device == "cuda" and "out of memory" in str(e).lower():
237
+ print("CUDA out of memory, try reducing vae_batch_size or using CPU")
238
+ raise
239
+
240
+ # 20250506 pftq: Concatenate latents
241
+ print("Concatenating latents...")
242
+ history_latents = torch.cat(latents, dim=2) # Shape: (1, channels, frames, height//8, width//8)
243
+ print(f"History latents shape: {history_latents.shape}")
244
+
245
+ # 20250506 pftq: Get first frame's latent
246
+ start_latent = history_latents[:, :, :1] # Shape: (1, channels, 1, height//8, width//8)
247
+ print(f"Start latent shape: {start_latent.shape}")
248
+
249
+ # 20250506 pftq: Move VAE back to CPU to free GPU memory
250
+ if device == "cuda":
251
+ vae.to(cpu)
252
+ torch.cuda.empty_cache()
253
+ print("VAE moved back to CPU, CUDA cache cleared")
254
+
255
+ return start_latent, input_image_np, history_latents, fps, target_height, target_width, input_video_pixels
256
+
257
+ except Exception as e:
258
+ print(f"Error in video_encode: {str(e)}")
259
+ raise
260
+
261
+ # 20250508 pftq: for saving prompt to mp4 metadata comments
262
+ def set_mp4_comments_imageio_ffmpeg(input_file, comments):
263
+ try:
264
+ # Get the path to the bundled FFmpeg binary from imageio-ffmpeg
265
+ ffmpeg_path = imageio_ffmpeg.get_ffmpeg_exe()
266
+
267
+ # Check if input file exists
268
+ if not os.path.exists(input_file):
269
+ print(f"Error: Input file {input_file} does not exist")
270
+ return False
271
+
272
+ # Create a temporary file path
273
+ temp_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False).name
274
+
275
+ # FFmpeg command using the bundled binary
276
+ command = [
277
+ ffmpeg_path, # Use imageio-ffmpeg's FFmpeg
278
+ '-i', input_file, # input file
279
+ '-metadata', f'comment={comments}', # set comment metadata
280
+ '-c:v', 'copy', # copy video stream without re-encoding
281
+ '-c:a', 'copy', # copy audio stream without re-encoding
282
+ '-y', # overwrite output file if it exists
283
+ temp_file # temporary output file
284
+ ]
285
+
286
+ # Run the FFmpeg command
287
+ result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
288
+
289
+ if result.returncode == 0:
290
+ # Replace the original file with the modified one
291
+ shutil.move(temp_file, input_file)
292
+ print(f"Successfully added comments to {input_file}")
293
+ return True
294
+ else:
295
+ # Clean up temp file if FFmpeg fails
296
+ if os.path.exists(temp_file):
297
+ os.remove(temp_file)
298
+ print(f"Error: FFmpeg failed with message:\n{result.stderr}")
299
+ return False
300
+
301
+ except Exception as e:
302
+ # Clean up temp file in case of other errors
303
+ if 'temp_file' in locals() and os.path.exists(temp_file):
304
+ os.remove(temp_file)
305
+ print(f"Error saving prompt to video metadata, ffmpeg may be required: "+str(e))
306
+ return False
307
 
308
+ @torch.no_grad()
309
+ def worker(input_image, image_position, prompts, n_prompt, seed, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, mp4_crf):
310
+ is_last_frame = (image_position == 100)
311
+ def encode_prompt(prompt, n_prompt):
312
+ llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
313
 
314
+ if cfg == 1:
315
+ llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
316
+ else:
317
+ llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
318
 
319
+ llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
320
+ llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
 
321
 
322
+ llama_vec = llama_vec.to(transformer.dtype)
323
+ llama_vec_n = llama_vec_n.to(transformer.dtype)
324
+ clip_l_pooler = clip_l_pooler.to(transformer.dtype)
325
+ clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
326
+ return [llama_vec, clip_l_pooler, llama_vec_n, clip_l_pooler_n, llama_attention_mask, llama_attention_mask_n]
327
 
 
 
 
328
  total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
329
  total_latent_sections = int(max(round(total_latent_sections), 1))
330
 
 
347
  fake_diffusers_current_device(text_encoder, gpu) # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode.
348
  load_model_as_complete(text_encoder_2, target_device=gpu)
349
 
350
+ prompt_parameters = []
351
 
352
+ for prompt_part in prompts:
353
+ prompt_parameters.append(encode_prompt(prompt_part, n_prompt))
 
 
 
 
 
354
 
355
  # Processing input image
356
 
357
  stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
358
 
359
  H, W, C = input_image.shape
360
+ height, width = find_nearest_bucket(H, W, resolution=resolution)
361
+
362
+ def get_start_latent(input_image, height, width, vae, gpu, image_encoder, high_vram):
363
+ input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
364
+
365
+ #Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
366
+
367
+ input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
368
+ input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
369
+
370
+ # VAE encoding
371
+
372
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
373
+
374
+ if not high_vram:
375
+ load_model_as_complete(vae, target_device=gpu)
376
+
377
+ start_latent = vae_encode(input_image_pt, vae)
378
+
379
+ # CLIP Vision
380
+
381
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
382
+
383
+ if not high_vram:
384
+ load_model_as_complete(image_encoder, target_device=gpu)
385
 
386
+ image_encoder_last_hidden_state = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder).last_hidden_state
387
+
388
+ return [start_latent, image_encoder_last_hidden_state]
389
+
390
+ [start_latent, image_encoder_last_hidden_state] = get_start_latent(input_image, height, width, vae, gpu, image_encoder, high_vram)
391
 
392
  # Dtype
393
 
 
 
 
 
394
  image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
395
 
396
  # Sampling
 
400
  rnd = torch.Generator("cpu").manual_seed(seed)
401
 
402
  history_latents = torch.zeros(size=(1, 16, 16 + 2 + 1, height // 8, width // 8), dtype=torch.float32).cpu()
403
+ start_latent = start_latent.to(history_latents)
404
  history_pixels = None
405
 
406
+ history_latents = torch.cat([start_latent, history_latents] if is_last_frame else [history_latents, start_latent], dim=2)
407
  total_generated_latent_frames = 1
408
 
409
+ if enable_preview:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
410
  def callback(d):
411
  preview = d['denoised']
412
  preview = vae_decode_fake(preview)
413
+
414
  preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
415
  preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
416
+
417
  if stream.input_queue.top() == 'end':
418
  stream.output_queue.push(('end', None))
419
  raise KeyboardInterrupt('User ends the task.')
420
+
421
  current_step = d['i'] + 1
422
  percentage = int(100.0 * current_step / steps)
423
  hint = f'Sampling {current_step}/{steps}'
424
+ desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30), Resolution: {height}px * {width}px. The video is being extended now ...'
425
  stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
426
  return
427
+ else:
428
+ def callback(d):
429
+ return
430
 
431
+ indices = torch.arange(0, sum([1, 16, 2, 1, latent_window_size])).unsqueeze(0)
432
+ if is_last_frame:
433
+ latent_indices, clean_latent_1x_indices, clean_latent_2x_indices, clean_latent_4x_indices, clean_latent_indices_start = indices.split([latent_window_size, 1, 2, 16, 1], dim=1)
434
+ clean_latent_indices = torch.cat([clean_latent_1x_indices, clean_latent_indices_start], dim=1)
435
+ else:
436
  clean_latent_indices_start, clean_latent_4x_indices, clean_latent_2x_indices, clean_latent_1x_indices, latent_indices = indices.split([1, 16, 2, 1, latent_window_size], dim=1)
437
  clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)
438
 
439
+ def post_process(generated_latents, total_generated_latent_frames, history_latents, high_vram, transformer, gpu, vae, history_pixels, latent_window_size, enable_preview, section_index, total_latent_sections, outputs_folder, mp4_crf, stream):
440
+ total_generated_latent_frames += int(generated_latents.shape[2])
441
+ history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2) if is_last_frame else torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)
442
+
443
+ if not high_vram:
444
+ offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
445
+ load_model_as_complete(vae, target_device=gpu)
446
+
447
+ if history_pixels is None:
448
+ real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :] if is_last_frame else history_latents[:, :, -total_generated_latent_frames:, :, :]
449
+ history_pixels = vae_decode(real_history_latents, vae).cpu()
450
+ else:
451
+ section_latent_frames = latent_window_size * 2
452
+ overlapped_frames = latent_window_size * 4 - 3
453
+
454
+ if is_last_frame:
455
+ real_history_latents = history_latents[:, :, :min(section_latent_frames, total_generated_latent_frames), :, :]
456
+ history_pixels = soft_append_bcthw(vae_decode(real_history_latents, vae).cpu(), history_pixels, overlapped_frames)
457
+ else:
458
+ real_history_latents = history_latents[:, :, -min(section_latent_frames, total_generated_latent_frames):, :, :]
459
+ history_pixels = soft_append_bcthw(history_pixels, vae_decode(real_history_latents, vae).cpu(), overlapped_frames)
460
+
461
+ if not high_vram:
462
+ unload_complete_models()
463
+
464
+ if enable_preview or section_index == (0 if is_last_frame else (total_latent_sections - 1)):
465
+ output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
466
+
467
+ save_bcthw_as_mp4(history_pixels, output_filename, fps=30, crf=mp4_crf)
468
+
469
+ print(f'Decoded. Current latent shape pixel shape {history_pixels.shape}')
470
+
471
+ stream.output_queue.push(('file', output_filename))
472
+ return [total_generated_latent_frames, history_latents, history_pixels]
473
+
474
+ for section_index in range(total_latent_sections - 1, -1, -1) if is_last_frame else range(total_latent_sections):
475
+ if stream.input_queue.top() == 'end':
476
+ stream.output_queue.push(('end', None))
477
+ return
478
+
479
+ print(f'section_index = {section_index}, total_latent_sections = {total_latent_sections}')
480
+
481
+ if len(prompt_parameters) > 0:
482
+ [llama_vec, clip_l_pooler, llama_vec_n, clip_l_pooler_n, llama_attention_mask, llama_attention_mask_n] = prompt_parameters.pop((len(prompt_parameters) - 1) if is_last_frame else 0)
483
+
484
+ if not high_vram:
485
+ unload_complete_models()
486
+ move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
487
+
488
+ if use_teacache:
489
+ transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
490
+ else:
491
+ transformer.initialize_teacache(enable_teacache=False)
492
+
493
+ if is_last_frame:
494
+ clean_latents_1x, clean_latents_2x, clean_latents_4x = history_latents[:, :, :sum([1, 2, 16]), :, :].split([1, 2, 16], dim=2)
495
+ clean_latents = torch.cat([clean_latents_1x, start_latent], dim=2)
496
+ else:
497
+ clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[:, :, -sum([16, 2, 1]):, :, :].split([16, 2, 1], dim=2)
498
+ clean_latents = torch.cat([start_latent, clean_latents_1x], dim=2)
499
 
500
  generated_latents = sample_hunyuan(
501
  transformer=transformer,
 
528
  callback=callback,
529
  )
530
 
531
+ [total_generated_latent_frames, history_latents, history_pixels] = post_process(generated_latents, total_generated_latent_frames, history_latents, high_vram, transformer, gpu, vae, history_pixels, latent_window_size, enable_preview, section_index, total_latent_sections, outputs_folder, mp4_crf, stream)
532
+ except:
533
+ traceback.print_exc()
534
 
535
+ if not high_vram:
536
+ unload_complete_models(
537
+ text_encoder, text_encoder_2, image_encoder, vae, transformer
538
+ )
539
 
540
+ stream.output_queue.push(('end', None))
541
+ return
542
 
543
+ # 20250506 pftq: Modified worker to accept video input and clean frame count
544
+ @torch.no_grad()
545
+ def worker_video(input_video, prompts, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
546
+ def encode_prompt(prompt, n_prompt):
547
+ llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
548
 
549
+ if cfg == 1:
550
+ llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
551
+ else:
552
+ llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
553
 
554
+ llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
555
+ llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
556
 
557
+ llama_vec = llama_vec.to(transformer.dtype)
558
+ llama_vec_n = llama_vec_n.to(transformer.dtype)
559
+ clip_l_pooler = clip_l_pooler.to(transformer.dtype)
560
+ clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
561
+ return [llama_vec, clip_l_pooler, llama_vec_n, clip_l_pooler_n, llama_attention_mask, llama_attention_mask_n]
562
+
563
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
564
 
565
+ try:
566
+ # Clean GPU
567
+ if not high_vram:
568
+ unload_complete_models(
569
+ text_encoder, text_encoder_2, image_encoder, vae, transformer
570
+ )
571
+
572
+ # Text encoding
573
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
574
+
575
+ if not high_vram:
576
+ fake_diffusers_current_device(text_encoder, gpu) # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode.
577
+ load_model_as_complete(text_encoder_2, target_device=gpu)
578
 
579
+ prompt_parameters = []
580
+
581
+ for prompt_part in prompts:
582
+ prompt_parameters.append(encode_prompt(prompt_part, n_prompt))
583
+
584
+ # 20250506 pftq: Processing input video instead of image
585
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Video processing ...'))))
586
+
587
+ # 20250506 pftq: Encode video
588
+ start_latent, input_image_np, video_latents, fps, height, width = video_encode(input_video, resolution, no_resize, vae, vae_batch_size=vae_batch, device=gpu)[:6]
589
+ start_latent = start_latent.to(dtype=torch.float32).cpu()
590
+ video_latents = video_latents.cpu()
591
+
592
+ # CLIP Vision
593
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
594
+
595
+ if not high_vram:
596
+ load_model_as_complete(image_encoder, target_device=gpu)
597
+
598
+ image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
599
+ image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
600
+
601
+ # Dtype
602
+ image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
603
+
604
+ total_latent_sections = (total_second_length * fps) / (latent_window_size * 4)
605
+ total_latent_sections = int(max(round(total_latent_sections), 1))
606
+
607
+ if enable_preview:
608
+ def callback(d):
609
+ preview = d['denoised']
610
+ preview = vae_decode_fake(preview)
611
+
612
+ preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
613
+ preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
614
+
615
+ if stream.input_queue.top() == 'end':
616
+ stream.output_queue.push(('end', None))
617
+ raise KeyboardInterrupt('User ends the task.')
618
+
619
+ current_step = d['i'] + 1
620
+ percentage = int(100.0 * current_step / steps)
621
+ hint = f'Sampling {current_step}/{steps}'
622
+ desc = f'Total frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / fps) :.2f} seconds (FPS-{fps}), Resolution: {height}px * {width}px, Seed: {seed}, Video {idx+1} of {batch}. The video is generating part {section_index+1} of {total_latent_sections}...'
623
+ stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
624
+ return
625
+ else:
626
+ def callback(d):
627
+ return
628
+
629
+ def compute_latent(history_latents, latent_window_size, num_clean_frames, start_latent):
630
+ # 20250506 pftq: Use user-specified number of context frames, matching original allocation for num_clean_frames=2
631
+ available_frames = history_latents.shape[2] # Number of latent frames
632
+ max_pixel_frames = min(latent_window_size * 4 - 3, available_frames * 4) # Cap at available pixel frames
633
+ adjusted_latent_frames = max(1, (max_pixel_frames + 3) // 4) # Convert back to latent frames
634
+ # Adjust num_clean_frames to match original behavior: num_clean_frames=2 means 1 frame for clean_latents_1x
635
+ effective_clean_frames = max(0, num_clean_frames - 1)
636
+ effective_clean_frames = min(effective_clean_frames, available_frames - 2) if available_frames > 2 else 0 # 20250507 pftq: changed 1 to 2 for edge case for <=1 sec videos
637
+ num_2x_frames = min(2, max(1, available_frames - effective_clean_frames - 1)) if available_frames > effective_clean_frames + 1 else 0 # 20250507 pftq: subtracted 1 for edge case for <=1 sec videos
638
+ num_4x_frames = min(16, max(1, available_frames - effective_clean_frames - num_2x_frames)) if available_frames > effective_clean_frames + num_2x_frames else 0 # 20250507 pftq: Edge case for <=1 sec
639
+
640
+ total_context_frames = num_4x_frames + num_2x_frames + effective_clean_frames
641
+ total_context_frames = min(total_context_frames, available_frames) # 20250507 pftq: Edge case for <=1 sec videos
642
+
643
+ indices = torch.arange(0, sum([1, num_4x_frames, num_2x_frames, effective_clean_frames, adjusted_latent_frames])).unsqueeze(0) # 20250507 pftq: latent_window_size to adjusted_latent_frames for edge case for <=1 sec videos
644
+ clean_latent_indices_start, clean_latent_4x_indices, clean_latent_2x_indices, clean_latent_1x_indices, latent_indices = indices.split(
645
+ [1, num_4x_frames, num_2x_frames, effective_clean_frames, adjusted_latent_frames], dim=1 # 20250507 pftq: latent_window_size to adjusted_latent_frames for edge case for <=1 sec videos
646
+ )
647
+ clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)
648
+
649
+ # 20250506 pftq: Split history_latents dynamically based on available frames
650
+ fallback_frame_count = 2 # 20250507 pftq: Changed 0 to 2 Edge case for <=1 sec videos
651
+ context_frames = clean_latents_4x = clean_latents_2x = clean_latents_1x = history_latents[:, :, :fallback_frame_count, :, :]
652
+
653
+ if total_context_frames > 0:
654
+ context_frames = history_latents[:, :, -total_context_frames:, :, :]
655
+ split_sizes = [num_4x_frames, num_2x_frames, effective_clean_frames]
656
+ split_sizes = [s for s in split_sizes if s > 0] # Remove zero sizes
657
+ if split_sizes:
658
+ splits = context_frames.split(split_sizes, dim=2)
659
+ split_idx = 0
660
+
661
+ if num_4x_frames > 0:
662
+ clean_latents_4x = splits[split_idx]
663
+ split_idx = 1
664
+ if clean_latents_4x.shape[2] < 2: # 20250507 pftq: edge case for <=1 sec videos
665
+ print("Edge case for <=1 sec videos 4x")
666
+ clean_latents_4x = clean_latents_4x.expand(-1, -1, 2, -1, -1)
667
+
668
+ if num_2x_frames > 0 and split_idx < len(splits):
669
+ clean_latents_2x = splits[split_idx]
670
+ if clean_latents_2x.shape[2] < 2: # 20250507 pftq: edge case for <=1 sec videos
671
+ print("Edge case for <=1 sec videos 2x")
672
+ clean_latents_2x = clean_latents_2x.expand(-1, -1, 2, -1, -1)
673
+ split_idx += 1
674
+ elif clean_latents_2x.shape[2] < 2: # 20250507 pftq: edge case for <=1 sec videos
675
+ clean_latents_2x = clean_latents_4x
676
+
677
+ if effective_clean_frames > 0 and split_idx < len(splits):
678
+ clean_latents_1x = splits[split_idx]
679
+
680
+ clean_latents = torch.cat([start_latent, clean_latents_1x], dim=2)
681
+
682
+ # 20250507 pftq: Fix for <=1 sec videos.
683
+ max_frames = min(latent_window_size * 4 - 3, history_latents.shape[2] * 4)
684
+ return [max_frames, clean_latents, clean_latents_2x, clean_latents_4x, latent_indices, clean_latents, clean_latent_indices, clean_latent_2x_indices, clean_latent_4x_indices]
685
+
686
+ for idx in range(batch):
687
+ if batch > 1:
688
+ print(f"Beginning video {idx+1} of {batch} with seed {seed} ")
689
+
690
+ #job_id = generate_timestamp()
691
+ job_id = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+f"_framepackf1-videoinput_{width}-{total_second_length}sec_seed-{seed}_steps-{steps}_distilled-{gs}_cfg-{cfg}" # 20250506 pftq: easier to read timestamp and filename
692
+
693
+ # Sampling
694
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
695
+
696
+ rnd = torch.Generator("cpu").manual_seed(seed)
697
+
698
+ # 20250506 pftq: Initialize history_latents with video latents
699
+ history_latents = video_latents
700
+ total_generated_latent_frames = history_latents.shape[2]
701
+ # 20250506 pftq: Initialize history_pixels to fix UnboundLocalError
702
+ history_pixels = None
703
+ previous_video = None
704
+
705
+ for section_index in range(total_latent_sections):
706
+ if stream.input_queue.top() == 'end':
707
+ stream.output_queue.push(('end', None))
708
+ return
709
+
710
+ print(f'section_index = {section_index}, total_latent_sections = {total_latent_sections}')
711
+
712
+ if len(prompt_parameters) > 0:
713
+ [llama_vec, clip_l_pooler, llama_vec_n, clip_l_pooler_n, llama_attention_mask, llama_attention_mask_n] = prompt_parameters.pop(0)
714
+
715
+ if not high_vram:
716
+ unload_complete_models()
717
+ move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
718
+
719
+ if use_teacache:
720
+ transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
721
+ else:
722
+ transformer.initialize_teacache(enable_teacache=False)
723
+
724
+ [max_frames, clean_latents, clean_latents_2x, clean_latents_4x, latent_indices, clean_latents, clean_latent_indices, clean_latent_2x_indices, clean_latent_4x_indices] = compute_latent(history_latents, latent_window_size, num_clean_frames, start_latent)
725
+
726
+ generated_latents = sample_hunyuan(
727
+ transformer=transformer,
728
+ sampler='unipc',
729
+ width=width,
730
+ height=height,
731
+ frames=max_frames,
732
+ real_guidance_scale=cfg,
733
+ distilled_guidance_scale=gs,
734
+ guidance_rescale=rs,
735
+ num_inference_steps=steps,
736
+ generator=rnd,
737
+ prompt_embeds=llama_vec,
738
+ prompt_embeds_mask=llama_attention_mask,
739
+ prompt_poolers=clip_l_pooler,
740
+ negative_prompt_embeds=llama_vec_n,
741
+ negative_prompt_embeds_mask=llama_attention_mask_n,
742
+ negative_prompt_poolers=clip_l_pooler_n,
743
+ device=gpu,
744
+ dtype=torch.bfloat16,
745
+ image_embeddings=image_encoder_last_hidden_state,
746
+ latent_indices=latent_indices,
747
+ clean_latents=clean_latents,
748
+ clean_latent_indices=clean_latent_indices,
749
+ clean_latents_2x=clean_latents_2x,
750
+ clean_latent_2x_indices=clean_latent_2x_indices,
751
+ clean_latents_4x=clean_latents_4x,
752
+ clean_latent_4x_indices=clean_latent_4x_indices,
753
+ callback=callback,
754
+ )
755
+
756
+ total_generated_latent_frames += int(generated_latents.shape[2])
757
+ history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)
758
+
759
+ if not high_vram:
760
+ offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
761
+ load_model_as_complete(vae, target_device=gpu)
762
+
763
+ if history_pixels is None:
764
+ real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :]
765
+ history_pixels = vae_decode(real_history_latents, vae).cpu()
766
+ else:
767
+ section_latent_frames = latent_window_size * 2
768
+ overlapped_frames = min(latent_window_size * 4 - 3, history_pixels.shape[2])
769
+
770
+ real_history_latents = history_latents[:, :, -min(total_generated_latent_frames, section_latent_frames):, :, :]
771
+ history_pixels = soft_append_bcthw(history_pixels, vae_decode(real_history_latents, vae).cpu(), overlapped_frames)
772
+
773
+ if not high_vram:
774
+ unload_complete_models()
775
+
776
+ if enable_preview or section_index == total_latent_sections - 1:
777
+ output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
778
+
779
+ # 20250506 pftq: Use input video FPS for output
780
+ save_bcthw_as_mp4(history_pixels, output_filename, fps=fps, crf=mp4_crf)
781
+ print(f"Latest video saved: {output_filename}")
782
+ # 20250508 pftq: Save prompt to mp4 metadata comments
783
+ set_mp4_comments_imageio_ffmpeg(output_filename, f"Prompt: {prompts} | Negative Prompt: {n_prompt}");
784
+ print(f"Prompt saved to mp4 metadata comments: {output_filename}")
785
+
786
+ # 20250506 pftq: Clean up previous partial files
787
+ if previous_video is not None and os.path.exists(previous_video):
788
+ try:
789
+ os.remove(previous_video)
790
+ print(f"Previous partial video deleted: {previous_video}")
791
+ except Exception as e:
792
+ print(f"Error deleting previous partial video {previous_video}: {e}")
793
+ previous_video = output_filename
794
+
795
+ print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
796
+
797
+ stream.output_queue.push(('file', output_filename))
798
+
799
+ seed = (seed + 1) % np.iinfo(np.int32).max
800
 
 
801
  except:
802
  traceback.print_exc()
803
 
 
809
  stream.output_queue.push(('end', None))
810
  return
811
 
812
+ def get_duration(input_image, image_position, prompts, generation_mode, n_prompt, seed, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, mp4_crf):
813
+ return total_second_length * 60 * (0.9 if use_teacache else 1.5) * (1 + ((steps - 25) / 100))
814
 
815
+ # Remove this decorator if you run on local
816
  @spaces.GPU(duration=get_duration)
817
+ def process_on_gpu(input_image,
818
+ image_position=0,
819
+ prompts=[""],
820
+ generation_mode="image",
821
+ n_prompt="",
822
+ seed=31337,
823
+ resolution=640,
824
+ total_second_length=5,
825
+ latent_window_size=9,
826
+ steps=25,
827
+ cfg=1.0,
828
+ gs=10.0,
829
+ rs=0.0,
830
+ gpu_memory_preservation=6,
831
+ enable_preview=True,
832
+ use_teacache=False,
833
  mp4_crf=16
834
  ):
835
+ start = time.time()
836
  global stream
837
+ stream = AsyncStream()
838
+
839
+ async_run(worker, input_image, image_position, prompts, n_prompt, seed, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, mp4_crf)
840
+
841
+ output_filename = None
842
+
843
+ while True:
844
+ flag, data = stream.output_queue.next()
845
+
846
+ if flag == 'file':
847
+ output_filename = data
848
+ yield gr.update(value=output_filename, label="Previewed Frames"), gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True), gr.update()
849
+
850
+ if flag == 'progress':
851
+ preview, desc, html = data
852
+ yield gr.update(label="Previewed Frames"), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True), gr.update()
853
+
854
+ if flag == 'end':
855
+ end = time.time()
856
+ secondes = int(end - start)
857
+ minutes = math.floor(secondes / 60)
858
+ secondes = secondes - (minutes * 60)
859
+ hours = math.floor(minutes / 60)
860
+ minutes = minutes - (hours * 60)
861
+ yield gr.update(value=output_filename, label="Finished Frames"), gr.update(visible=False), gr.update(), "The process has lasted " + \
862
+ ((str(hours) + " h, ") if hours != 0 else "") + \
863
+ ((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + \
864
+ str(secondes) + " sec. " + \
865
+ "You can upscale the result with RIFE. To make all your generated scenes consistent, you can then apply a face swap on the main character. If you do not see the generated video above, the process may have failed. See the logs for more information. If you see an error like ''NVML_SUCCESS == r INTERNAL ASSERT FAILED'', you probably haven't enough VRAM. Test an example or other options to compare. You can share your inputs to the original space or set your space in public for a peer review.", gr.update(interactive=True), gr.update(interactive=False), gr.update(visible = False)
866
+ break
867
+
868
+ def process(input_image,
869
+ image_position=0,
870
+ prompt="",
871
+ generation_mode="image",
872
+ n_prompt="",
873
+ randomize_seed=True,
874
+ seed=31337,
875
+ resolution=640,
876
+ total_second_length=5,
877
+ latent_window_size=9,
878
+ steps=25,
879
+ cfg=1.0,
880
+ gs=10.0,
881
+ rs=0.0,
882
+ gpu_memory_preservation=6,
883
+ enable_preview=True,
884
+ use_teacache=False,
885
+ mp4_crf=16
886
+ ):
887
+
888
+ if torch.cuda.device_count() == 0:
889
+ gr.Warning('Set this space to GPU config to make it work.')
890
+ yield gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(visible = False)
891
+ return
892
+
893
+ if randomize_seed:
894
+ seed = random.randint(0, np.iinfo(np.int32).max)
895
+
896
+ prompts = prompt.split(";")
897
+
898
  # assert input_image is not None, 'No input image!'
899
+ if generation_mode == "text":
900
  default_height, default_width = 640, 640
901
  input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255
902
  print("No input image provided. Using a blank white image.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
903
 
904
+ yield gr.update(label="Previewed Frames"), None, '', '', gr.update(interactive=False), gr.update(interactive=True), gr.update()
905
+
906
+ yield from process_on_gpu(input_image,
907
+ image_position,
908
+ prompts,
909
+ generation_mode,
910
+ n_prompt,
911
+ seed,
912
+ resolution,
913
+ total_second_length,
914
+ latent_window_size,
915
+ steps,
916
+ cfg,
917
+ gs,
918
+ rs,
919
+ gpu_memory_preservation,
920
+ enable_preview,
921
+ use_teacache,
922
+ mp4_crf
923
+ )
924
+
925
+ def get_duration_video(input_video, prompts, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
926
+ return total_second_length * 60 * (1.5 if use_teacache else 2.5) * (1 + ((steps - 25) / 100))
927
+
928
+ # Remove this decorator if you run on local
929
+ @spaces.GPU(duration=get_duration_video)
930
+ def process_video_on_gpu(input_video, prompts, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
931
+ start = time.time()
932
+ global stream
933
  stream = AsyncStream()
934
 
935
+ # 20250506 pftq: Pass num_clean_frames, vae_batch, etc
936
+ async_run(worker_video, input_video, prompts, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch)
937
 
938
  output_filename = None
939
 
 
942
 
943
  if flag == 'file':
944
  output_filename = data
945
+ yield gr.update(value=output_filename, label="Previewed Frames"), gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True), gr.update()
946
 
947
  if flag == 'progress':
948
  preview, desc, html = data
949
+ yield gr.update(label="Previewed Frames"), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True), gr.update() # 20250506 pftq: Keep refreshing the video in case it got hidden when the tab was in the background
950
 
951
  if flag == 'end':
952
+ end = time.time()
953
+ secondes = int(end - start)
954
+ minutes = math.floor(secondes / 60)
955
+ secondes = secondes - (minutes * 60)
956
+ hours = math.floor(minutes / 60)
957
+ minutes = minutes - (hours * 60)
958
+ yield gr.update(value=output_filename, label="Finished Frames"), gr.update(visible=False), desc + \
959
+ " The process has lasted " + \
960
+ ((str(hours) + " h, ") if hours != 0 else "") + \
961
+ ((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + \
962
+ str(secondes) + " sec. " + \
963
+ " You can upscale the result with RIFE. To make all your generated scenes consistent, you can then apply a face swap on the main character. If you do not see the generated video above, the process may have failed. See the logs for more information. If you see an error like ''NVML_SUCCESS == r INTERNAL ASSERT FAILED'', you probably haven't enough VRAM. Test an example or other options to compare. You can share your inputs to the original space or set your space in public for a peer review.", '', gr.update(interactive=True), gr.update(interactive=False), gr.update(visible = False)
964
  break
965
 
966
+ def process_video(input_video, prompt, n_prompt, randomize_seed, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
967
+ global high_vram
968
+
969
+ if torch.cuda.device_count() == 0:
970
+ gr.Warning('Set this space to GPU config to make it work.')
971
+ yield gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(visible = False)
972
+ return
973
+
974
+ if randomize_seed:
975
+ seed = random.randint(0, np.iinfo(np.int32).max)
976
+
977
+ prompts = prompt.split(";")
978
+
979
+ # 20250506 pftq: Updated assertion for video input
980
+ assert input_video is not None, 'No input video!'
981
+
982
+ yield gr.update(label="Previewed Frames"), None, '', '', gr.update(interactive=False), gr.update(interactive=True), gr.update()
983
+
984
+ # 20250507 pftq: Even the H100 needs offloading if the video dimensions are 720p or higher
985
+ if high_vram and (no_resize or resolution>640):
986
+ print("Disabling high vram mode due to no resize and/or potentially higher resolution...")
987
+ high_vram = False
988
+ vae.enable_slicing()
989
+ vae.enable_tiling()
990
+ DynamicSwapInstaller.install_model(transformer, device=gpu)
991
+ DynamicSwapInstaller.install_model(text_encoder, device=gpu)
992
+
993
+ # 20250508 pftq: automatically set distilled cfg to 1 if cfg is used
994
+ if cfg > 1:
995
+ gs = 1
996
+
997
+ yield from process_video_on_gpu(input_video, prompts, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch)
998
 
999
  def end_process():
1000
  stream.input_queue.push('end')
1001
 
1002
+ timeless_prompt_value = [""]
1003
+ timed_prompts = {}
1004
+
1005
+ def handle_prompt_number_change():
1006
+ timed_prompts.clear()
1007
+ return []
1008
 
1009
+ def handle_timeless_prompt_change(timeless_prompt):
1010
+ timeless_prompt_value[0] = timeless_prompt
1011
+ return refresh_prompt()
 
 
1012
 
1013
+ def handle_timed_prompt_change(timed_prompt_id, timed_prompt):
1014
+ timed_prompts[timed_prompt_id] = timed_prompt
1015
+ return refresh_prompt()
1016
+
1017
+ def refresh_prompt():
1018
+ dict_values = {k: v for k, v in timed_prompts.items()}
1019
+ sorted_dict_values = sorted(dict_values.items(), key=lambda x: x[0])
1020
+ array = []
1021
+ for sorted_dict_value in sorted_dict_values:
1022
+ if timeless_prompt_value[0] is not None and len(timeless_prompt_value[0]) and sorted_dict_value[1] is not None and len(sorted_dict_value[1]):
1023
+ array.append(timeless_prompt_value[0] + ". " + sorted_dict_value[1])
1024
+ else:
1025
+ array.append(timeless_prompt_value[0] + sorted_dict_value[1])
1026
+ print(str(array))
1027
+ return ";".join(array)
1028
+
1029
+ title_html = """
1030
+ <h1><center>FramePack</center></h1>
1031
+ <big><center>Generate videos from text/image/video freely, without account, without watermark and download it</center></big>
1032
+ <br/>
1033
+
1034
+ <p>This space is ready to work on ZeroGPU and GPU and has been tested successfully on ZeroGPU. Please leave a <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/FramePack/discussions/new">message in discussion</a> if you encounter issues.</p>
1035
+ """
1036
+
1037
+ js = """
1038
+ function createGradioAnimation() {
1039
+ window.addEventListener("beforeunload", function (e) {
1040
+ if (document.getElementById('end-button') && !document.getElementById('end-button').disabled) {
1041
+ var confirmationMessage = 'A process is still running. '
1042
+ + 'If you leave before saving, your changes will be lost.';
1043
+
1044
+ (e || window.event).returnValue = confirmationMessage;
1045
+ }
1046
+ return confirmationMessage;
1047
+ });
1048
+ return 'Animation created';
1049
+ }
1050
+ """
1051
 
1052
  css = make_progress_bar_css()
1053
+ block = gr.Blocks(css=css, js=js).queue()
1054
  with block:
1055
+ if torch.cuda.device_count() == 0:
1056
+ with gr.Row():
1057
+ gr.HTML("""
1058
+ <p style="background-color: red;"><big><big><big><b>⚠️To use FramePack, <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/FramePack?duplicate=true">duplicate this space</a> and set a GPU with 30 GB VRAM.</b>
1059
+
1060
+ You can't use FramePack directly here because this space runs on a CPU, which is not enough for FramePack. Please provide <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/FramePack/discussions/new">feedback</a> if you have issues.
1061
+ </big></big></big></p>
1062
  """)
1063
+ gr.HTML(title_html)
1064
+ local_storage = gr.BrowserState(default_local_storage)
1065
  with gr.Row():
1066
  with gr.Column():
1067
+ generation_mode = gr.Radio([["Text-to-Video", "text"], ["Image-to-Video", "image"], ["Video Extension", "video"]], elem_id="generation-mode", label="Generation mode", value = "image")
1068
+ text_to_video_hint = gr.HTML("I discourage to use the Text-to-Video feature. You should rather generate an image with Flux and use Image-to-Video. You will save time.")
1069
+ input_image = gr.Image(sources='upload', type="numpy", label="Image", height=320)
1070
+ image_position = gr.Slider(label="Image position", minimum=0, maximum=100, value=0, step=100, info='0=Video start; 100=Video end (lower quality)')
1071
+ input_video = gr.Video(sources='upload', label="Input Video", height=320)
1072
+ timeless_prompt = gr.Textbox(label="Timeless prompt", info='Used on the whole duration of the generation', value='', placeholder="The creature starts to move, fast motion, fixed camera, focus motion, consistent arm, consistent position, mute colors, insanely detailed")
1073
+ prompt_number = gr.Slider(label="Timed prompt number", minimum=0, maximum=1000, value=0, step=1, info='Prompts will automatically appear')
1074
+
1075
+ @gr.render(inputs=prompt_number)
1076
+ def show_split(prompt_number):
1077
+ for digit in range(prompt_number):
1078
+ timed_prompt_id = gr.Textbox(value="timed_prompt_" + str(digit), visible=False)
1079
+ timed_prompt = gr.Textbox(label="Timed prompt #" + str(digit + 1), elem_id="timed_prompt_" + str(digit), value="")
1080
+ timed_prompt.change(fn=handle_timed_prompt_change, inputs=[timed_prompt_id, timed_prompt], outputs=[final_prompt])
1081
+
1082
+ final_prompt = gr.Textbox(label="Final prompt", value='', info='Use ; to separate in time; beware to write to stop the previous action')
1083
+ prompt_hint = gr.HTML("Video extension barely follows the prompt; to force to follow the prompt, you have to set the Distilled CFG Scale to 3.0 and the Context Frames to 2 but the video quality will be poor.")
1084
+ total_second_length = gr.Slider(label="Video Length to Generate (seconds)", minimum=1, maximum=120, value=2, step=0.1)
1085
 
1086
  with gr.Row():
1087
+ start_button = gr.Button(value="🎥 Generate", variant="primary")
1088
+ start_button_video = gr.Button(value="🎥 Generate", variant="primary")
1089
+ end_button = gr.Button(elem_id="end-button", value="End Generation", variant="stop", interactive=False)
1090
 
1091
+ with gr.Accordion("Advanced settings", open=False):
1092
+ enable_preview = gr.Checkbox(label='Enable preview', value=True, info='Display a preview around each second generated but it costs 2 sec. for each second generated.')
1093
+ use_teacache = gr.Checkbox(label='Use TeaCache', value=False, info='Faster speed and no break in brightness, but often makes hands and fingers slightly worse.')
1094
+
1095
+ n_prompt = gr.Textbox(label="Negative Prompt", value="Missing arm, unrealistic position, impossible contortion, visible bone, muscle contraction, blurred, blurry", info='Requires using normal CFG (undistilled) instead of Distilled (set Distilled=1 and CFG > 1).')
1096
+
1097
+ latent_window_size = gr.Slider(label="Latent Window Size", minimum=1, maximum=33, value=9, step=1, info='Generate more frames at a time (larger chunks). Less degradation and better blending but higher VRAM cost. Should not change.')
1098
+ steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=30, step=1, info='Increase for more quality, especially if using high non-distilled CFG. If your animation has very few motion, you may have brutal brightness change; this can be fixed increasing the steps.')
1099
+
1100
+ with gr.Row():
1101
+ no_resize = gr.Checkbox(label='Force Original Video Resolution (no Resizing)', value=False, info='Might run out of VRAM (720p requires > 24GB VRAM).')
1102
+ resolution = gr.Dropdown([
1103
+ ["409,600 px (working)", 640],
1104
+ ["451,584 px (working)", 672],
1105
+ ["495,616 px (VRAM pb on HF)", 704],
1106
+ ["589,824 px (not tested)", 768],
1107
+ ["692,224 px (not tested)", 832],
1108
+ ["746,496 px (not tested)", 864],
1109
+ ["921,600 px (not tested)", 960]
1110
+ ], value=672, label="Resolution (width x height)", info="Do not affect the generation time")
1111
+
1112
+ # 20250506 pftq: Reduced default distilled guidance scale to improve adherence to input video
1113
+ cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, info='Use this instead of Distilled for more detail/control + Negative Prompt (make sure Distilled set to 1). Doubles render time. Should not change.')
1114
+ gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=10.0, step=0.01, info='Prompt adherence at the cost of less details from the input video, but to a lesser extent than Context Frames; 3=follow the prompt but blurred motions & unsharped, 10=focus motion; changing this value is not recommended')
1115
+ rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01, info='Should not change')
1116
+
1117
+
1118
+ # 20250506 pftq: Renamed slider to Number of Context Frames and updated description
1119
+ num_clean_frames = gr.Slider(label="Number of Context Frames", minimum=2, maximum=10, value=5, step=1, info="Retain more video details but increase memory use. Reduce to 2 to avoid memory issues or to give more weight to the prompt.")
1120
+
1121
+ default_vae = 32
1122
+ if high_vram:
1123
+ default_vae = 128
1124
+ elif free_mem_gb>=20:
1125
+ default_vae = 64
1126
+
1127
+ vae_batch = gr.Slider(label="VAE Batch Size for Input Video", minimum=4, maximum=256, value=default_vae, step=4, info="Reduce if running out of memory. Increase for better quality frames during fast motion.")
1128
+
1129
+
1130
+ gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB) (larger means slower)", minimum=6, maximum=128, value=6, step=0.1, info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed.")
1131
+
1132
+ mp4_crf = gr.Slider(label="MP4 Compression", minimum=0, maximum=100, value=16, step=1, info="Lower means better quality. 0 is uncompressed. Change to 16 if you get black outputs. ")
1133
+ batch = gr.Slider(label="Batch Size (Number of Videos)", minimum=1, maximum=1000, value=1, step=1, info='Generate multiple videos each with a different seed.')
1134
+ with gr.Row():
1135
+ randomize_seed = gr.Checkbox(label='Randomize seed', value=True, info='If checked, the seed is always different')
1136
+ seed = gr.Slider(label="Seed", minimum=0, maximum=np.iinfo(np.int32).max, step=1, randomize=True)
1137
 
1138
  with gr.Column():
1139
+ warning = gr.HTML(value = "<center><big>Your computer must <u>not</u> enter into standby mode.</big><br/>On Chrome, you can force to keep a tab alive in <code>chrome://discards/</code></center>", visible = False)
1140
+ result_video = gr.Video(label="Generated Frames", autoplay=True, show_share_button=False, height=512, loop=True)
1141
  preview_image = gr.Image(label="Next Latents", height=200, visible=False)
 
1142
  progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
1143
  progress_bar = gr.HTML('', elem_classes='no-generating-animation')
1144
 
1145
+ # 20250506 pftq: Updated inputs to include num_clean_frames
1146
+ ips = [input_image, image_position, final_prompt, generation_mode, n_prompt, randomize_seed, seed, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, mp4_crf]
1147
+ ips_video = [input_video, final_prompt, n_prompt, randomize_seed, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch]
1148
+
1149
+ gr.Examples(
1150
+ label = "Examples from text",
1151
+ examples = [
1152
+ [
1153
+ None, # input_image
1154
+ 0, # image_position
1155
+ "Overcrowed street in Japan, photorealistic, realistic, intricate details, 8k, insanely detailed",
1156
+ "text", # generation_mode
1157
+ "Missing arm, unrealistic position, impossible contortion, visible bone, muscle contraction, blurred, blurry", # n_prompt
1158
+ True, # randomize_seed
1159
+ 42, # seed
1160
+ 672, # resolution
1161
+ 1, # total_second_length
1162
+ 9, # latent_window_size
1163
+ 30, # steps
1164
+ 1.0, # cfg
1165
+ 10.0, # gs
1166
+ 0.0, # rs
1167
+ 6, # gpu_memory_preservation
1168
+ False, # enable_preview
1169
+ False, # use_teacache
1170
+ 16 # mp4_crf
1171
+ ]
1172
+ ],
1173
+ run_on_click = True,
1174
+ fn = process,
1175
+ inputs = ips,
1176
+ outputs = [result_video, preview_image, progress_desc, progress_bar, start_button, end_button],
1177
+ cache_examples = False,
1178
+ )
1179
+
1180
+ gr.Examples(
1181
+ label = "Examples from image",
1182
+ examples = [
1183
+ [
1184
+ "./img_examples/Example1.png", # input_image
1185
+ 0, # image_position
1186
+ "A dolphin emerges from the water, photorealistic, realistic, intricate details, 8k, insanely detailed",
1187
+ "image", # generation_mode
1188
+ "Missing arm, unrealistic position, impossible contortion, visible bone, muscle contraction, blurred, blurry", # n_prompt
1189
+ True, # randomize_seed
1190
+ 42, # seed
1191
+ 672, # resolution
1192
+ 1, # total_second_length
1193
+ 9, # latent_window_size
1194
+ 30, # steps
1195
+ 1.0, # cfg
1196
+ 10.0, # gs
1197
+ 0.0, # rs
1198
+ 6, # gpu_memory_preservation
1199
+ False, # enable_preview
1200
+ True, # use_teacache
1201
+ 16 # mp4_crf
1202
+ ],
1203
+ [
1204
+ "./img_examples/Example2.webp", # input_image
1205
+ 0, # image_position
1206
+ "A man on the left and a woman on the right face each other ready to start a conversation, large space between the persons, full view, full-length view, 3D, pixar, 3D render, CGI. The man talks and the woman listens; A man on the left and a woman on the right face each other ready to start a conversation, large space between the persons, full view, full-length view, 3D, pixar, 3D render, CGI. The woman talks, the man stops talking and the man listens; A man on the left and a woman on the right face each other ready to start a conversation, large space between the persons, full view, full-length view, 3D, pixar, 3D render, CGI. The woman talks and the man listens",
1207
+ "image", # generation_mode
1208
+ "Missing arm, unrealistic position, impossible contortion, visible bone, muscle contraction, blurred, blurry", # n_prompt
1209
+ True, # randomize_seed
1210
+ 42, # seed
1211
+ 672, # resolution
1212
+ 2, # total_second_length
1213
+ 9, # latent_window_size
1214
+ 30, # steps
1215
+ 1.0, # cfg
1216
+ 10.0, # gs
1217
+ 0.0, # rs
1218
+ 6, # gpu_memory_preservation
1219
+ False, # enable_preview
1220
+ True, # use_teacache
1221
+ 16 # mp4_crf
1222
+ ],
1223
+ [
1224
+ "./img_examples/Example2.webp", # input_image
1225
+ 0, # image_position
1226
+ "A man on the left and a woman on the right face each other ready to start a conversation, large space between the persons, full view, full-length view, 3D, pixar, 3D render, CGI. The woman talks and the man listens; A man on the left and a woman on the right face each other ready to start a conversation, large space between the persons, full view, full-length view, 3D, pixar, 3D render, CGI. The man talks, the woman stops talking and the woman listens A man on the left and a woman on the right face each other ready to start a conversation, large space between the persons, full view, full-length view, 3D, pixar, 3D render, CGI. The man talks and the woman listens",
1227
+ "image", # generation_mode
1228
+ "Missing arm, unrealistic position, impossible contortion, visible bone, muscle contraction, blurred, blurry", # n_prompt
1229
+ True, # randomize_seed
1230
+ 42, # seed
1231
+ 672, # resolution
1232
+ 2, # total_second_length
1233
+ 9, # latent_window_size
1234
+ 30, # steps
1235
+ 1.0, # cfg
1236
+ 10.0, # gs
1237
+ 0.0, # rs
1238
+ 6, # gpu_memory_preservation
1239
+ False, # enable_preview
1240
+ True, # use_teacache
1241
+ 16 # mp4_crf
1242
+ ],
1243
+ [
1244
+ "./img_examples/Example3.jpg", # input_image
1245
+ 0, # image_position
1246
+ "A boy is walking to the right, full view, full-length view, cartoon",
1247
+ "image", # generation_mode
1248
+ "Missing arm, unrealistic position, impossible contortion, visible bone, muscle contraction, blurred, blurry", # n_prompt
1249
+ True, # randomize_seed
1250
+ 42, # seed
1251
+ 672, # resolution
1252
+ 1, # total_second_length
1253
+ 9, # latent_window_size
1254
+ 30, # steps
1255
+ 1.0, # cfg
1256
+ 10.0, # gs
1257
+ 0.0, # rs
1258
+ 6, # gpu_memory_preservation
1259
+ False, # enable_preview
1260
+ True, # use_teacache
1261
+ 16 # mp4_crf
1262
+ ],
1263
+ [
1264
+ "./img_examples/Example4.webp", # input_image
1265
+ 100, # image_position
1266
+ "A building starting to explode, photorealistic, realisitc, 8k, insanely detailed",
1267
+ "image", # generation_mode
1268
+ "Missing arm, unrealistic position, impossible contortion, visible bone, muscle contraction, blurred, blurry", # n_prompt
1269
+ True, # randomize_seed
1270
+ 42, # seed
1271
+ 672, # resolution
1272
+ 1, # total_second_length
1273
+ 9, # latent_window_size
1274
+ 30, # steps
1275
+ 1.0, # cfg
1276
+ 10.0, # gs
1277
+ 0.0, # rs
1278
+ 6, # gpu_memory_preservation
1279
+ False, # enable_preview
1280
+ False, # use_teacache
1281
+ 16 # mp4_crf
1282
+ ]
1283
+ ],
1284
+ run_on_click = True,
1285
+ fn = process,
1286
+ inputs = ips,
1287
+ outputs = [result_video, preview_image, progress_desc, progress_bar, start_button, end_button],
1288
+ cache_examples = False,
1289
+ )
1290
+
1291
+ gr.Examples(
1292
+ label = "Examples from video",
1293
+ examples = [
1294
+ [
1295
+ "./img_examples/Example1.mp4", # input_video
1296
+ "View of the sea as far as the eye can see, from the seaside, a piece of land is barely visible on the horizon at the middle, the sky is radiant, reflections of the sun in the water, photorealistic, realistic, intricate details, 8k, insanely detailed",
1297
+ "Missing arm, unrealistic position, impossible contortion, visible bone, muscle contraction, blurred, blurry", # n_prompt
1298
+ True, # randomize_seed
1299
+ 42, # seed
1300
+ 1, # batch
1301
+ 672, # resolution
1302
+ 1, # total_second_length
1303
+ 9, # latent_window_size
1304
+ 30, # steps
1305
+ 1.0, # cfg
1306
+ 10.0, # gs
1307
+ 0.0, # rs
1308
+ 6, # gpu_memory_preservation
1309
+ False, # enable_preview
1310
+ True, # use_teacache
1311
+ False, # no_resize
1312
+ 16, # mp4_crf
1313
+ 5, # num_clean_frames
1314
+ default_vae
1315
+ ]
1316
+ ],
1317
+ run_on_click = True,
1318
+ fn = process_video,
1319
+ inputs = ips_video,
1320
+ outputs = [result_video, preview_image, progress_desc, progress_bar, start_button_video, end_button],
1321
+ cache_examples = False,
1322
+ )
1323
+
1324
+ def save_preferences(preferences, value):
1325
+ preferences["generation-mode"] = value
1326
+ return preferences
1327
+
1328
+ def load_preferences(saved_prefs):
1329
+ saved_prefs = init_preferences(saved_prefs)
1330
+ return saved_prefs["generation-mode"]
1331
+
1332
+ def init_preferences(saved_prefs):
1333
+ if saved_prefs is None:
1334
+ saved_prefs = default_local_storage
1335
+ return saved_prefs
1336
+
1337
+ def check_parameters(generation_mode, input_image, input_video):
1338
+ if generation_mode == "image" and input_image is None:
1339
+ raise gr.Error("Please provide an image to extend.")
1340
+ if generation_mode == "video" and input_video is None:
1341
+ raise gr.Error("Please provide a video to extend.")
1342
+ return [gr.update(interactive=True), gr.update(visible = True)]
1343
+
1344
+ def handle_generation_mode_change(generation_mode_data):
1345
+ if generation_mode_data == "text":
1346
+ return [gr.update(visible = True), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False), gr.update(visible = True), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False)]
1347
+ elif generation_mode_data == "image":
1348
+ return [gr.update(visible = False), gr.update(visible = True), gr.update(visible = True), gr.update(visible = False), gr.update(visible = True), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False)]
1349
+ elif generation_mode_data == "video":
1350
+ return [gr.update(visible = False), gr.update(visible = False), gr.update(visible = False), gr.update(visible = True), gr.update(visible = False), gr.update(visible = True), gr.update(visible = True), gr.update(visible = True), gr.update(visible = True), gr.update(visible = True), gr.update(visible = True)]
1351
+
1352
+ prompt_number.change(fn=handle_prompt_number_change, inputs=[], outputs=[])
1353
+ timeless_prompt.change(fn=handle_timeless_prompt_change, inputs=[timeless_prompt], outputs=[final_prompt])
1354
+ start_button.click(fn = check_parameters, inputs = [
1355
+ generation_mode, input_image, input_video
1356
+ ], outputs = [end_button, warning], queue = False, show_progress = False).success(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button, warning], scroll_to_output = True)
1357
+ start_button_video.click(fn = check_parameters, inputs = [
1358
+ generation_mode, input_image, input_video
1359
+ ], outputs = [end_button, warning], queue = False, show_progress = False).success(fn=process_video, inputs=ips_video, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button_video, end_button, warning], scroll_to_output = True)
1360
  end_button.click(fn=end_process)
1361
 
1362
+ generation_mode.change(fn = save_preferences, inputs = [
1363
+ local_storage,
1364
+ generation_mode,
1365
+ ], outputs = [
1366
+ local_storage
1367
+ ])
1368
+
1369
+ generation_mode.change(
1370
+ fn=handle_generation_mode_change,
1371
+ inputs=[generation_mode],
1372
+ outputs=[text_to_video_hint, image_position, input_image, input_video, start_button, start_button_video, no_resize, batch, num_clean_frames, vae_batch, prompt_hint]
1373
+ )
1374
+
1375
+ # Update display when the page loads
1376
+ block.load(
1377
+ fn=handle_generation_mode_change, inputs = [
1378
+ generation_mode
1379
+ ], outputs = [
1380
+ text_to_video_hint, image_position, input_image, input_video, start_button, start_button_video, no_resize, batch, num_clean_frames, vae_batch, prompt_hint
1381
+ ]
1382
+ )
1383
+
1384
+ # Load saved preferences when the page loads
1385
+ block.load(
1386
+ fn=load_preferences, inputs = [
1387
+ local_storage
1388
+ ], outputs = [
1389
+ generation_mode
1390
+ ]
1391
+ )
1392
+
1393
+ block.launch(mcp_server=True, ssr_mode=False)