Spaces:
Runtime error
Runtime error
| # MIT License | |
| # Copyright (c) 2022 Intelligent Systems Lab Org | |
| # Permission is hereby granted, free of charge, to any person obtaining a copy | |
| # of this software and associated documentation files (the "Software"), to deal | |
| # in the Software without restriction, including without limitation the rights | |
| # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
| # copies of the Software, and to permit persons to whom the Software is | |
| # furnished to do so, subject to the following conditions: | |
| # The above copyright notice and this permission notice shall be included in all | |
| # copies or substantial portions of the Software. | |
| # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
| # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
| # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
| # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
| # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
| # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
| # SOFTWARE. | |
| # File author: Shariq Farooq Bhat | |
| import math | |
| import random | |
| import cv2 | |
| import numpy as np | |
| class RandomFliplr(object): | |
| """Horizontal flip of the sample with given probability. | |
| """ | |
| def __init__(self, probability=0.5): | |
| """Init. | |
| Args: | |
| probability (float, optional): Flip probability. Defaults to 0.5. | |
| """ | |
| self.__probability = probability | |
| def __call__(self, sample): | |
| prob = random.random() | |
| if prob < self.__probability: | |
| for k, v in sample.items(): | |
| if len(v.shape) >= 2: | |
| sample[k] = np.fliplr(v).copy() | |
| return sample | |
| def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA): | |
| """Rezise the sample to ensure the given size. Keeps aspect ratio. | |
| Args: | |
| sample (dict): sample | |
| size (tuple): image size | |
| Returns: | |
| tuple: new size | |
| """ | |
| shape = list(sample["disparity"].shape) | |
| if shape[0] >= size[0] and shape[1] >= size[1]: | |
| return sample | |
| scale = [0, 0] | |
| scale[0] = size[0] / shape[0] | |
| scale[1] = size[1] / shape[1] | |
| scale = max(scale) | |
| shape[0] = math.ceil(scale * shape[0]) | |
| shape[1] = math.ceil(scale * shape[1]) | |
| # resize | |
| sample["image"] = cv2.resize( | |
| sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method | |
| ) | |
| sample["disparity"] = cv2.resize( | |
| sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST | |
| ) | |
| sample["mask"] = cv2.resize( | |
| sample["mask"].astype(np.float32), | |
| tuple(shape[::-1]), | |
| interpolation=cv2.INTER_NEAREST, | |
| ) | |
| sample["mask"] = sample["mask"].astype(bool) | |
| return tuple(shape) | |
| class RandomCrop(object): | |
| """Get a random crop of the sample with the given size (width, height). | |
| """ | |
| def __init__( | |
| self, | |
| width, | |
| height, | |
| resize_if_needed=False, | |
| image_interpolation_method=cv2.INTER_AREA, | |
| ): | |
| """Init. | |
| Args: | |
| width (int): output width | |
| height (int): output height | |
| resize_if_needed (bool, optional): If True, sample might be upsampled to ensure | |
| that a crop of size (width, height) is possbile. Defaults to False. | |
| """ | |
| self.__size = (height, width) | |
| self.__resize_if_needed = resize_if_needed | |
| self.__image_interpolation_method = image_interpolation_method | |
| def __call__(self, sample): | |
| shape = sample["disparity"].shape | |
| if self.__size[0] > shape[0] or self.__size[1] > shape[1]: | |
| if self.__resize_if_needed: | |
| shape = apply_min_size( | |
| sample, self.__size, self.__image_interpolation_method | |
| ) | |
| else: | |
| raise Exception( | |
| "Output size {} bigger than input size {}.".format( | |
| self.__size, shape | |
| ) | |
| ) | |
| offset = ( | |
| np.random.randint(shape[0] - self.__size[0] + 1), | |
| np.random.randint(shape[1] - self.__size[1] + 1), | |
| ) | |
| for k, v in sample.items(): | |
| if k == "code" or k == "basis": | |
| continue | |
| if len(sample[k].shape) >= 2: | |
| sample[k] = v[ | |
| offset[0]: offset[0] + self.__size[0], | |
| offset[1]: offset[1] + self.__size[1], | |
| ] | |
| return sample | |
| class Resize(object): | |
| """Resize sample to given size (width, height). | |
| """ | |
| def __init__( | |
| self, | |
| width, | |
| height, | |
| resize_target=True, | |
| keep_aspect_ratio=False, | |
| ensure_multiple_of=1, | |
| resize_method="lower_bound", | |
| image_interpolation_method=cv2.INTER_AREA, | |
| letter_box=False, | |
| ): | |
| """Init. | |
| Args: | |
| width (int): desired output width | |
| height (int): desired output height | |
| resize_target (bool, optional): | |
| True: Resize the full sample (image, mask, target). | |
| False: Resize image only. | |
| Defaults to True. | |
| keep_aspect_ratio (bool, optional): | |
| True: Keep the aspect ratio of the input sample. | |
| Output sample might not have the given width and height, and | |
| resize behaviour depends on the parameter 'resize_method'. | |
| Defaults to False. | |
| ensure_multiple_of (int, optional): | |
| Output width and height is constrained to be multiple of this parameter. | |
| Defaults to 1. | |
| resize_method (str, optional): | |
| "lower_bound": Output will be at least as large as the given size. | |
| "upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.) | |
| "minimal": Scale as least as possible. (Output size might be smaller than given size.) | |
| Defaults to "lower_bound". | |
| """ | |
| self.__width = width | |
| self.__height = height | |
| self.__resize_target = resize_target | |
| self.__keep_aspect_ratio = keep_aspect_ratio | |
| self.__multiple_of = ensure_multiple_of | |
| self.__resize_method = resize_method | |
| self.__image_interpolation_method = image_interpolation_method | |
| self.__letter_box = letter_box | |
| def constrain_to_multiple_of(self, x, min_val=0, max_val=None): | |
| y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int) | |
| if max_val is not None and y > max_val: | |
| y = (np.floor(x / self.__multiple_of) | |
| * self.__multiple_of).astype(int) | |
| if y < min_val: | |
| y = (np.ceil(x / self.__multiple_of) | |
| * self.__multiple_of).astype(int) | |
| return y | |
| def get_size(self, width, height): | |
| # determine new height and width | |
| scale_height = self.__height / height | |
| scale_width = self.__width / width | |
| if self.__keep_aspect_ratio: | |
| if self.__resize_method == "lower_bound": | |
| # scale such that output size is lower bound | |
| if scale_width > scale_height: | |
| # fit width | |
| scale_height = scale_width | |
| else: | |
| # fit height | |
| scale_width = scale_height | |
| elif self.__resize_method == "upper_bound": | |
| # scale such that output size is upper bound | |
| if scale_width < scale_height: | |
| # fit width | |
| scale_height = scale_width | |
| else: | |
| # fit height | |
| scale_width = scale_height | |
| elif self.__resize_method == "minimal": | |
| # scale as least as possbile | |
| if abs(1 - scale_width) < abs(1 - scale_height): | |
| # fit width | |
| scale_height = scale_width | |
| else: | |
| # fit height | |
| scale_width = scale_height | |
| else: | |
| raise ValueError( | |
| f"resize_method {self.__resize_method} not implemented" | |
| ) | |
| if self.__resize_method == "lower_bound": | |
| new_height = self.constrain_to_multiple_of( | |
| scale_height * height, min_val=self.__height | |
| ) | |
| new_width = self.constrain_to_multiple_of( | |
| scale_width * width, min_val=self.__width | |
| ) | |
| elif self.__resize_method == "upper_bound": | |
| new_height = self.constrain_to_multiple_of( | |
| scale_height * height, max_val=self.__height | |
| ) | |
| new_width = self.constrain_to_multiple_of( | |
| scale_width * width, max_val=self.__width | |
| ) | |
| elif self.__resize_method == "minimal": | |
| new_height = self.constrain_to_multiple_of(scale_height * height) | |
| new_width = self.constrain_to_multiple_of(scale_width * width) | |
| else: | |
| raise ValueError( | |
| f"resize_method {self.__resize_method} not implemented") | |
| return (new_width, new_height) | |
| def make_letter_box(self, sample): | |
| top = bottom = (self.__height - sample.shape[0]) // 2 | |
| left = right = (self.__width - sample.shape[1]) // 2 | |
| sample = cv2.copyMakeBorder( | |
| sample, top, bottom, left, right, cv2.BORDER_CONSTANT, None, 0) | |
| return sample | |
| def __call__(self, sample): | |
| width, height = self.get_size( | |
| sample["image"].shape[1], sample["image"].shape[0] | |
| ) | |
| # resize sample | |
| sample["image"] = cv2.resize( | |
| sample["image"], | |
| (width, height), | |
| interpolation=self.__image_interpolation_method, | |
| ) | |
| if self.__letter_box: | |
| sample["image"] = self.make_letter_box(sample["image"]) | |
| if self.__resize_target: | |
| if "disparity" in sample: | |
| sample["disparity"] = cv2.resize( | |
| sample["disparity"], | |
| (width, height), | |
| interpolation=cv2.INTER_NEAREST, | |
| ) | |
| if self.__letter_box: | |
| sample["disparity"] = self.make_letter_box( | |
| sample["disparity"]) | |
| if "depth" in sample: | |
| sample["depth"] = cv2.resize( | |
| sample["depth"], (width, | |
| height), interpolation=cv2.INTER_NEAREST | |
| ) | |
| if self.__letter_box: | |
| sample["depth"] = self.make_letter_box(sample["depth"]) | |
| sample["mask"] = cv2.resize( | |
| sample["mask"].astype(np.float32), | |
| (width, height), | |
| interpolation=cv2.INTER_NEAREST, | |
| ) | |
| if self.__letter_box: | |
| sample["mask"] = self.make_letter_box(sample["mask"]) | |
| sample["mask"] = sample["mask"].astype(bool) | |
| return sample | |
| class ResizeFixed(object): | |
| def __init__(self, size): | |
| self.__size = size | |
| def __call__(self, sample): | |
| sample["image"] = cv2.resize( | |
| sample["image"], self.__size[::-1], interpolation=cv2.INTER_LINEAR | |
| ) | |
| sample["disparity"] = cv2.resize( | |
| sample["disparity"], self.__size[::- | |
| 1], interpolation=cv2.INTER_NEAREST | |
| ) | |
| sample["mask"] = cv2.resize( | |
| sample["mask"].astype(np.float32), | |
| self.__size[::-1], | |
| interpolation=cv2.INTER_NEAREST, | |
| ) | |
| sample["mask"] = sample["mask"].astype(bool) | |
| return sample | |
| class Rescale(object): | |
| """Rescale target values to the interval [0, max_val]. | |
| If input is constant, values are set to max_val / 2. | |
| """ | |
| def __init__(self, max_val=1.0, use_mask=True): | |
| """Init. | |
| Args: | |
| max_val (float, optional): Max output value. Defaults to 1.0. | |
| use_mask (bool, optional): Only operate on valid pixels (mask == True). Defaults to True. | |
| """ | |
| self.__max_val = max_val | |
| self.__use_mask = use_mask | |
| def __call__(self, sample): | |
| disp = sample["disparity"] | |
| if self.__use_mask: | |
| mask = sample["mask"] | |
| else: | |
| mask = np.ones_like(disp, dtype=np.bool) | |
| if np.sum(mask) == 0: | |
| return sample | |
| min_val = np.min(disp[mask]) | |
| max_val = np.max(disp[mask]) | |
| if max_val > min_val: | |
| sample["disparity"][mask] = ( | |
| (disp[mask] - min_val) / (max_val - min_val) * self.__max_val | |
| ) | |
| else: | |
| sample["disparity"][mask] = np.ones_like( | |
| disp[mask]) * self.__max_val / 2.0 | |
| return sample | |
| # mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] | |
| class NormalizeImage(object): | |
| """Normlize image by given mean and std. | |
| """ | |
| def __init__(self, mean, std): | |
| self.__mean = mean | |
| self.__std = std | |
| def __call__(self, sample): | |
| sample["image"] = (sample["image"] - self.__mean) / self.__std | |
| return sample | |
| class DepthToDisparity(object): | |
| """Convert depth to disparity. Removes depth from sample. | |
| """ | |
| def __init__(self, eps=1e-4): | |
| self.__eps = eps | |
| def __call__(self, sample): | |
| assert "depth" in sample | |
| sample["mask"][sample["depth"] < self.__eps] = False | |
| sample["disparity"] = np.zeros_like(sample["depth"]) | |
| sample["disparity"][sample["depth"] >= self.__eps] = ( | |
| 1.0 / sample["depth"][sample["depth"] >= self.__eps] | |
| ) | |
| del sample["depth"] | |
| return sample | |
| class DisparityToDepth(object): | |
| """Convert disparity to depth. Removes disparity from sample. | |
| """ | |
| def __init__(self, eps=1e-4): | |
| self.__eps = eps | |
| def __call__(self, sample): | |
| assert "disparity" in sample | |
| disp = np.abs(sample["disparity"]) | |
| sample["mask"][disp < self.__eps] = False | |
| # print(sample["disparity"]) | |
| # print(sample["mask"].sum()) | |
| # exit() | |
| sample["depth"] = np.zeros_like(disp) | |
| sample["depth"][disp >= self.__eps] = ( | |
| 1.0 / disp[disp >= self.__eps] | |
| ) | |
| del sample["disparity"] | |
| return sample | |
| class PrepareForNet(object): | |
| """Prepare sample for usage as network input. | |
| """ | |
| def __init__(self): | |
| pass | |
| def __call__(self, sample): | |
| image = np.transpose(sample["image"], (2, 0, 1)) | |
| sample["image"] = np.ascontiguousarray(image).astype(np.float32) | |
| if "mask" in sample: | |
| sample["mask"] = sample["mask"].astype(np.float32) | |
| sample["mask"] = np.ascontiguousarray(sample["mask"]) | |
| if "disparity" in sample: | |
| disparity = sample["disparity"].astype(np.float32) | |
| sample["disparity"] = np.ascontiguousarray(disparity) | |
| if "depth" in sample: | |
| depth = sample["depth"].astype(np.float32) | |
| sample["depth"] = np.ascontiguousarray(depth) | |
| return sample | |