Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
from transformers import AutoModelForSequenceClassification
|
| 4 |
+
from transformers import AutoTokenizer
|
| 5 |
+
import torch
|
| 6 |
+
import numpy as np
|
| 7 |
+
|
| 8 |
+
def main():
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
st.title("yelp2024fall Test")
|
| 12 |
+
st.write("Enter a sentence for analysis:")
|
| 13 |
+
|
| 14 |
+
user_input = st.text_input("")
|
| 15 |
+
if user_input:
|
| 16 |
+
# Approach: AutoModel
|
| 17 |
+
model2 = AutoModelForSequenceClassification.from_pretrained("isom5240/CustomModel_yelp2024fall",
|
| 18 |
+
num_labels=5)
|
| 19 |
+
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
| 20 |
+
|
| 21 |
+
inputs = tokenizer(user_input,
|
| 22 |
+
padding=True,
|
| 23 |
+
truncation=True,
|
| 24 |
+
return_tensors='pt')
|
| 25 |
+
|
| 26 |
+
outputs = model2(**inputs)
|
| 27 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 28 |
+
predictions = predictions.cpu().detach().numpy()
|
| 29 |
+
# Get the index of the largest output value
|
| 30 |
+
max_index = np.argmax(predictions)
|
| 31 |
+
st.write(f"result (AutoModel) - Label: {max_index}")
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
if __name__ == "__main__":
|
| 35 |
+
main()
|