import streamlit as st from transformers import pipeline from transformers import AutoModelForSequenceClassification from transformers import AutoTokenizer import torch import numpy as np def main(): st.title("yelp2024fall Test") st.write("Enter a sentence for analysis:") user_input = st.text_input("") if user_input: sentiment_pipeline = pipeline(model="isom5240/CustomModel_yelp2024fall") tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") inputs = tokenizer(user_input, padding=True, truncation=True, return_tensors='pt') result = sentiment_pipeline(user_input) st.write(f"result (pipeline): {result[0]['label']}") model2 = AutoModelForSequenceClassification.from_pretrained("isom5240/CustomModel_yelp2024fall", num_labels=5) outputs = model2(**inputs) predictions = torch.nn.functional.softmax(outputs.logits, dim=-1) predictions = predictions.cpu().detach().numpy() # Get the index of the largest output value max_index = np.argmax(predictions) st.write(f"result (long) - Label: {max_index}") if __name__ == "__main__": main()