root
commited on
Commit
·
a459327
1
Parent(s):
d7fb7e8
ss
Browse files- .gitattributes +0 -3
- .gitignore +1 -0
- DEPLOYMENT.md +42 -0
- README.md +40 -7
- app.py +186 -0
- example.py +38 -0
- requirements.txt +12 -0
- utils.py +42 -0
.gitattributes
CHANGED
@@ -16,16 +16,13 @@
|
|
16 |
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
*.wasm filter=lfs diff=lfs merge=lfs -text
|
|
|
16 |
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
*.parquet filter=lfs diff=lfs merge=lfs -text
|
|
|
19 |
*.pickle filter=lfs diff=lfs merge=lfs -text
|
20 |
*.pkl filter=lfs diff=lfs merge=lfs -text
|
21 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
22 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
23 |
*.rar filter=lfs diff=lfs merge=lfs -text
|
24 |
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
|
|
25 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
|
|
26 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
27 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
28 |
*.wasm filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
DEPLOYMENT.md
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Deploying to Hugging Face Spaces
|
2 |
+
|
3 |
+
This guide explains how to deploy the Music Genre Classifier & Lyrics Generator to Hugging Face Spaces.
|
4 |
+
|
5 |
+
## Prerequisites
|
6 |
+
|
7 |
+
1. A Hugging Face account
|
8 |
+
2. Access to the Llama 3.1 8B Instruct model (requires acceptance of the model license)
|
9 |
+
3. A Hugging Face API token
|
10 |
+
|
11 |
+
## Deployment Steps
|
12 |
+
|
13 |
+
### 1. Create a New Space
|
14 |
+
|
15 |
+
1. Go to the Hugging Face website and log in
|
16 |
+
2. Navigate to "Spaces" in the top navigation
|
17 |
+
3. Click "Create new Space"
|
18 |
+
4. Choose "Gradio" as the SDK
|
19 |
+
5. Give your Space a name and description
|
20 |
+
6. Select "T4 GPU" as the hardware
|
21 |
+
|
22 |
+
### 2. Set up Environment Variables
|
23 |
+
|
24 |
+
Set up your Hugging Face access token as an environment variable:
|
25 |
+
|
26 |
+
1. Go to your profile settings in Hugging Face
|
27 |
+
2. Navigate to "Access Tokens" and create a new token with "write" access
|
28 |
+
3. In your Space settings, under "Repository secrets", add a new secret:
|
29 |
+
- Name: `HF_TOKEN`
|
30 |
+
- Value: Your Hugging Face access token
|
31 |
+
|
32 |
+
### 3. Upload the Files
|
33 |
+
|
34 |
+
Upload all the files from this repository to your Space.
|
35 |
+
|
36 |
+
### 4. Wait for Deployment
|
37 |
+
|
38 |
+
Hugging Face will automatically build and deploy your Space. This may take a few minutes, especially since it needs to download the models.
|
39 |
+
|
40 |
+
### 5. Access Your Application
|
41 |
+
|
42 |
+
Once deployed, you can access your application on your Hugging Face Space URL.
|
README.md
CHANGED
@@ -1,14 +1,47 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
-
short_description:
|
12 |
---
|
13 |
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Music Genre Classifier & Lyrics Generator
|
3 |
+
emoji: 🎵
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: purple
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.12.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
+
short_description: AI-powered music genre detection and genre-specific lyrics generation
|
12 |
---
|
13 |
|
14 |
+
# Music Genre Classifier & Lyrics Generator
|
15 |
+
|
16 |
+
This Hugging Face Space application provides two AI-powered features:
|
17 |
+
|
18 |
+
1. **Music Genre Classification**: Upload a music file and get an analysis of its genre using the [dima806/music_genres_classification](https://huggingface.co/dima806/music_genres_classification) model.
|
19 |
+
|
20 |
+
2. **Lyrics Generation**: Based on the detected genre, the app generates original lyrics using [Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) that match both the style of the genre and approximate length of the song.
|
21 |
+
|
22 |
+
## Features
|
23 |
+
|
24 |
+
- Upload any music file for instant genre classification
|
25 |
+
- Receive genre predictions with confidence scores
|
26 |
+
- Get AI-generated lyrics tailored to the detected music genre
|
27 |
+
- Lyrics length is automatically adjusted based on the song duration
|
28 |
+
- Simple and intuitive user interface
|
29 |
+
|
30 |
+
## Usage
|
31 |
+
|
32 |
+
1. Visit the live application on Hugging Face Spaces
|
33 |
+
2. Upload your music file using the provided interface
|
34 |
+
3. Click "Analyze & Generate" to process the audio
|
35 |
+
4. View the detected genre and generated lyrics in the output panels
|
36 |
+
|
37 |
+
## Technical Details
|
38 |
+
|
39 |
+
- Uses MFCC features extraction from audio for genre classification
|
40 |
+
- Leverages 4-bit quantization for efficient LLM inference on T4 GPU
|
41 |
+
- Implements a specialized prompt engineering approach to generate genre-specific lyrics
|
42 |
+
- Automatically scales lyrics length based on audio duration
|
43 |
+
|
44 |
+
## Links
|
45 |
+
|
46 |
+
- [Music Genre Classification Model](https://huggingface.co/dima806/music_genres_classification)
|
47 |
+
- [Llama 3.1 8B Instruct Model](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct)
|
app.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import io
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
from transformers import (
|
7 |
+
AutoModelForSequenceClassification,
|
8 |
+
AutoTokenizer,
|
9 |
+
pipeline,
|
10 |
+
AutoModelForCausalLM,
|
11 |
+
BitsAndBytesConfig
|
12 |
+
)
|
13 |
+
from huggingface_hub import login
|
14 |
+
from utils import (
|
15 |
+
load_audio,
|
16 |
+
extract_audio_duration,
|
17 |
+
extract_mfcc_features,
|
18 |
+
calculate_lyrics_length,
|
19 |
+
format_genre_results,
|
20 |
+
ensure_cuda_availability
|
21 |
+
)
|
22 |
+
|
23 |
+
# Login to Hugging Face Hub if token is provided
|
24 |
+
if "HF_TOKEN" in os.environ:
|
25 |
+
login(token=os.environ["HF_TOKEN"])
|
26 |
+
|
27 |
+
# Constants
|
28 |
+
GENRE_MODEL_NAME = "dima806/music_genres_classification"
|
29 |
+
LLM_MODEL_NAME = "meta-llama/Llama-3.1-8B-Instruct"
|
30 |
+
SAMPLE_RATE = 22050 # Standard sample rate for audio processing
|
31 |
+
|
32 |
+
# Check CUDA availability (for informational purposes)
|
33 |
+
CUDA_AVAILABLE = ensure_cuda_availability()
|
34 |
+
|
35 |
+
# Load genre classification model
|
36 |
+
genre_tokenizer = AutoTokenizer.from_pretrained(GENRE_MODEL_NAME)
|
37 |
+
genre_model = AutoModelForSequenceClassification.from_pretrained(GENRE_MODEL_NAME)
|
38 |
+
|
39 |
+
# Load LLM with appropriate quantization for T4 GPU
|
40 |
+
bnb_config = BitsAndBytesConfig(
|
41 |
+
load_in_4bit=True,
|
42 |
+
bnb_4bit_quant_type="nf4",
|
43 |
+
bnb_4bit_compute_dtype=torch.float16,
|
44 |
+
)
|
45 |
+
|
46 |
+
llm_tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL_NAME)
|
47 |
+
llm_model = AutoModelForCausalLM.from_pretrained(
|
48 |
+
LLM_MODEL_NAME,
|
49 |
+
device_map="auto",
|
50 |
+
quantization_config=bnb_config,
|
51 |
+
torch_dtype=torch.float16,
|
52 |
+
)
|
53 |
+
|
54 |
+
# Create LLM pipeline
|
55 |
+
llm_pipeline = pipeline(
|
56 |
+
"text-generation",
|
57 |
+
model=llm_model,
|
58 |
+
tokenizer=llm_tokenizer,
|
59 |
+
max_new_tokens=512,
|
60 |
+
)
|
61 |
+
|
62 |
+
def extract_audio_features(audio_file):
|
63 |
+
"""Extract audio features from an audio file."""
|
64 |
+
# Load the audio file using utility function
|
65 |
+
y, sr = load_audio(audio_file, SAMPLE_RATE)
|
66 |
+
|
67 |
+
# Get audio duration in seconds
|
68 |
+
duration = extract_audio_duration(y, sr)
|
69 |
+
|
70 |
+
# Extract MFCCs for genre classification
|
71 |
+
mfccs_mean = extract_mfcc_features(y, sr, n_mfcc=20)
|
72 |
+
|
73 |
+
return {
|
74 |
+
"features": mfccs_mean,
|
75 |
+
"duration": duration
|
76 |
+
}
|
77 |
+
|
78 |
+
def classify_genre(audio_features):
|
79 |
+
"""Classify the genre of the audio using the loaded model."""
|
80 |
+
inputs = genre_tokenizer(str(audio_features), return_tensors="pt", truncation=True, max_length=512)
|
81 |
+
|
82 |
+
with torch.no_grad():
|
83 |
+
outputs = genre_model(**inputs)
|
84 |
+
predictions = outputs.logits.softmax(dim=-1)
|
85 |
+
|
86 |
+
# Get the top 3 genres
|
87 |
+
values, indices = torch.topk(predictions, 3)
|
88 |
+
|
89 |
+
# Map indices to genre labels
|
90 |
+
genre_labels = genre_model.config.id2label
|
91 |
+
|
92 |
+
top_genres = []
|
93 |
+
for i, (value, index) in enumerate(zip(values[0], indices[0])):
|
94 |
+
genre = genre_labels[index.item()]
|
95 |
+
confidence = value.item()
|
96 |
+
top_genres.append((genre, confidence))
|
97 |
+
|
98 |
+
return top_genres
|
99 |
+
|
100 |
+
def generate_lyrics(genre, duration):
|
101 |
+
"""Generate lyrics based on the genre and with appropriate length."""
|
102 |
+
# Calculate appropriate lyrics length based on audio duration
|
103 |
+
lines_count = calculate_lyrics_length(duration)
|
104 |
+
|
105 |
+
# Create prompt for the LLM
|
106 |
+
prompt = f"""
|
107 |
+
You are a talented songwriter who specializes in {genre} music.
|
108 |
+
Write original {genre} song lyrics for a song that is {duration:.1f} seconds long.
|
109 |
+
The lyrics should:
|
110 |
+
- Perfectly capture the essence and style of {genre} music
|
111 |
+
- Be approximately {lines_count} lines long
|
112 |
+
- Have a coherent theme and flow
|
113 |
+
- Include a chorus and verses if appropriate for the genre
|
114 |
+
- Be completely original
|
115 |
+
|
116 |
+
Your lyrics:
|
117 |
+
"""
|
118 |
+
|
119 |
+
# Generate lyrics using the LLM
|
120 |
+
response = llm_pipeline(
|
121 |
+
prompt,
|
122 |
+
do_sample=True,
|
123 |
+
temperature=0.7,
|
124 |
+
top_p=0.9,
|
125 |
+
repetition_penalty=1.1,
|
126 |
+
return_full_text=False
|
127 |
+
)
|
128 |
+
|
129 |
+
# Extract and clean generated lyrics
|
130 |
+
lyrics = response[0]["generated_text"].strip()
|
131 |
+
return lyrics
|
132 |
+
|
133 |
+
def process_audio(audio_file):
|
134 |
+
"""Main function to process audio file, classify genre, and generate lyrics."""
|
135 |
+
if audio_file is None:
|
136 |
+
return "Please upload an audio file.", None
|
137 |
+
|
138 |
+
try:
|
139 |
+
# Extract audio features
|
140 |
+
audio_data = extract_audio_features(audio_file)
|
141 |
+
|
142 |
+
# Classify genre
|
143 |
+
top_genres = classify_genre(audio_data["features"])
|
144 |
+
|
145 |
+
# Format genre results using utility function
|
146 |
+
genre_results = format_genre_results(top_genres)
|
147 |
+
|
148 |
+
# Generate lyrics based on top genre
|
149 |
+
primary_genre, _ = top_genres[0]
|
150 |
+
lyrics = generate_lyrics(primary_genre, audio_data["duration"])
|
151 |
+
|
152 |
+
return genre_results, lyrics
|
153 |
+
|
154 |
+
except Exception as e:
|
155 |
+
return f"Error processing audio: {str(e)}", None
|
156 |
+
|
157 |
+
# Create Gradio interface
|
158 |
+
with gr.Blocks(title="Music Genre Classifier & Lyrics Generator") as demo:
|
159 |
+
gr.Markdown("# Music Genre Classifier & Lyrics Generator")
|
160 |
+
gr.Markdown("Upload a music file to classify its genre and generate matching lyrics.")
|
161 |
+
|
162 |
+
with gr.Row():
|
163 |
+
with gr.Column():
|
164 |
+
audio_input = gr.Audio(label="Upload Music", type="filepath")
|
165 |
+
submit_btn = gr.Button("Analyze & Generate")
|
166 |
+
|
167 |
+
with gr.Column():
|
168 |
+
genre_output = gr.Textbox(label="Detected Genres", lines=5)
|
169 |
+
lyrics_output = gr.Textbox(label="Generated Lyrics", lines=15)
|
170 |
+
|
171 |
+
submit_btn.click(
|
172 |
+
fn=process_audio,
|
173 |
+
inputs=[audio_input],
|
174 |
+
outputs=[genre_output, lyrics_output]
|
175 |
+
)
|
176 |
+
|
177 |
+
gr.Markdown("### How it works")
|
178 |
+
gr.Markdown("""
|
179 |
+
1. Upload an audio file of your choice
|
180 |
+
2. The system will classify the genre using the dima806/music_genres_classification model
|
181 |
+
3. Based on the detected genre, it will generate appropriate lyrics using Llama-3.1-8B-Instruct
|
182 |
+
4. The lyrics length is automatically adjusted based on your audio duration
|
183 |
+
""")
|
184 |
+
|
185 |
+
# Launch the app
|
186 |
+
demo.launch()
|
example.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
from app import process_audio
|
4 |
+
|
5 |
+
def main():
|
6 |
+
"""
|
7 |
+
Example function to demonstrate the application with a sample audio file.
|
8 |
+
|
9 |
+
Usage:
|
10 |
+
python example.py <path_to_audio_file>
|
11 |
+
"""
|
12 |
+
if len(sys.argv) != 2:
|
13 |
+
print("Usage: python example.py <path_to_audio_file>")
|
14 |
+
return
|
15 |
+
|
16 |
+
audio_file = sys.argv[1]
|
17 |
+
if not os.path.exists(audio_file):
|
18 |
+
print(f"Error: File {audio_file} does not exist.")
|
19 |
+
return
|
20 |
+
|
21 |
+
print(f"Processing audio file: {audio_file}")
|
22 |
+
|
23 |
+
# Call the main processing function
|
24 |
+
genre_results, lyrics = process_audio(audio_file)
|
25 |
+
|
26 |
+
# Print results
|
27 |
+
print("\n" + "="*50)
|
28 |
+
print("GENRE CLASSIFICATION RESULTS:")
|
29 |
+
print("="*50)
|
30 |
+
print(genre_results)
|
31 |
+
|
32 |
+
print("\n" + "="*50)
|
33 |
+
print("GENERATED LYRICS:")
|
34 |
+
print("="*50)
|
35 |
+
print(lyrics)
|
36 |
+
|
37 |
+
if __name__ == "__main__":
|
38 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio>=4.12.0
|
2 |
+
transformers>=4.36.2
|
3 |
+
torch>=2.1.2
|
4 |
+
torchaudio>=2.1.2
|
5 |
+
numpy>=1.26.2
|
6 |
+
accelerate>=0.25.0
|
7 |
+
librosa>=0.10.1
|
8 |
+
huggingface-hub>=0.20.3
|
9 |
+
bitsandbytes>=0.41.1
|
10 |
+
sentencepiece>=0.1.99
|
11 |
+
safetensors>=0.4.1
|
12 |
+
scipy>=1.12.0
|
utils.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import librosa
|
4 |
+
|
5 |
+
def load_audio(audio_file, sr=22050):
|
6 |
+
"""Load an audio file and convert to mono if needed."""
|
7 |
+
y, sr = librosa.load(audio_file, sr=sr, mono=True)
|
8 |
+
return y, sr
|
9 |
+
|
10 |
+
def extract_audio_duration(y, sr):
|
11 |
+
"""Get the duration of audio in seconds."""
|
12 |
+
return len(y) / sr
|
13 |
+
|
14 |
+
def extract_mfcc_features(y, sr, n_mfcc=20):
|
15 |
+
"""Extract MFCC features from audio."""
|
16 |
+
mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=n_mfcc)
|
17 |
+
mfccs_mean = np.mean(mfccs.T, axis=0)
|
18 |
+
return mfccs_mean
|
19 |
+
|
20 |
+
def calculate_lyrics_length(duration):
|
21 |
+
"""Calculate appropriate lyrics length based on audio duration."""
|
22 |
+
# Average song is 3.5 minutes with 20-30 lines
|
23 |
+
# So roughly 7-8 lines per minute
|
24 |
+
return max(10, int(duration / 60 * 8))
|
25 |
+
|
26 |
+
def format_genre_results(top_genres):
|
27 |
+
"""Format genre classification results for display."""
|
28 |
+
result = "Top Detected Genres:\n"
|
29 |
+
for genre, confidence in top_genres:
|
30 |
+
result += f"- {genre}: {confidence*100:.2f}%\n"
|
31 |
+
return result
|
32 |
+
|
33 |
+
def ensure_cuda_availability():
|
34 |
+
"""Check and report CUDA availability for informational purposes."""
|
35 |
+
cuda_available = torch.cuda.is_available()
|
36 |
+
if cuda_available:
|
37 |
+
device_count = torch.cuda.device_count()
|
38 |
+
device_name = torch.cuda.get_device_name(0) if device_count > 0 else "Unknown"
|
39 |
+
print(f"CUDA is available with {device_count} device(s). Using: {device_name}")
|
40 |
+
else:
|
41 |
+
print("CUDA is not available. Using CPU for inference.")
|
42 |
+
return cuda_available
|