|  | from transformers import pipeline | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | emotion_tone_map = { | 
					
						
						|  | "Sadness": "Be comforting, empathetic, and gentle.", | 
					
						
						|  | "Anger": "Stay calm, respectful, and de-escalate.", | 
					
						
						|  | "Love": "Be warm, appreciative, and encouraging.", | 
					
						
						|  | "Surprise": "Be affirming and help clarify what's surprising.", | 
					
						
						|  | "Fear": "Be reassuring and emphasize safety/facts.", | 
					
						
						|  | "Happiness": "Be enthusiastic and congratulatory.", | 
					
						
						|  | "Neutral": "Be informative and straightforward.", | 
					
						
						|  | "Disgust": "Be clinical, non-judgmental, and clarify facts.", | 
					
						
						|  | "Shame": "Be kind, avoid blame, and uplift the user.", | 
					
						
						|  | "Guilt": "Be compassionate and reduce self-blame.", | 
					
						
						|  | "Confusion": "Be extra clear and explain step-by-step.", | 
					
						
						|  | "Desire": "Be supportive and help guide constructively.", | 
					
						
						|  | "Sarcasm": "Stay serious, clarify misunderstandings politely.", | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | emotion_classifier = pipeline("text-classification", model="boltuix/bert-emotion") | 
					
						
						|  |  | 
					
						
						|  | def get_emotion_and_tone(text): | 
					
						
						|  | emotions = emotion_classifier(text) | 
					
						
						|  | detected_emotion = emotions[0]["label"].capitalize() if emotions else "Neutral" | 
					
						
						|  | emotion = detected_emotion if detected_emotion in emotion_tone_map else "Neutral" | 
					
						
						|  | tone_instruction = emotion_tone_map.get(emotion, "Be informative and polite.") | 
					
						
						|  | return emotion, tone_instruction |