import re from pathlib import Path import jaconv import torch from PIL import Image from loguru import logger from transformers import ViTImageProcessor, AutoTokenizer, VisionEncoderDecoderModel, GenerationMixin class MangaOcrModel(VisionEncoderDecoderModel, GenerationMixin): pass class MangaOcr: def __init__(self, pretrained_model_name_or_path="kha-white/manga-ocr-base", force_cpu=False): logger.info(f"Loading OCR model from {pretrained_model_name_or_path}") self.processor = ViTImageProcessor.from_pretrained(pretrained_model_name_or_path) self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path) self.model = MangaOcrModel.from_pretrained(pretrained_model_name_or_path) if not force_cpu and torch.cuda.is_available(): logger.info("Using CUDA") self.model.cuda() elif not force_cpu and torch.backends.mps.is_available(): logger.info("Using MPS") self.model.to("mps") else: logger.info("Using CPU") logger.info("OCR ready") def __call__(self, img_or_path): img = img_or_path.convert("L").convert("RGB") x = self._preprocess(img) x = self.model.generate(x[None].to(self.model.device), max_length=300)[0].cpu() x = self.tokenizer.decode(x, skip_special_tokens=True) x = post_process(x) return x def _preprocess(self, img): pixel_values = self.processor(img, return_tensors="pt").pixel_values return pixel_values.squeeze() def post_process(text): text = "".join(text.split()) text = text.replace("…", "...") text = re.sub("[・.]{2,}", lambda x: (x.end() - x.start()) * ".", text) text = jaconv.h2z(text, ascii=True, digit=True) return text