jarif commited on
Commit
a0fd701
·
verified ·
1 Parent(s): ce50827

Upload 3 files

Browse files
Files changed (3) hide show
  1. .env +1 -0
  2. app.py +74 -0
  3. requirements.txt +0 -0
.env ADDED
@@ -0,0 +1 @@
 
 
1
+ GEMINI_API_KEY="AIzaSyAf739yDURBsarkWma3No_S_sMDYSEC82o"
app.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import streamlit as st
3
+ import google.generativeai as genai
4
+ from dotenv import load_dotenv
5
+
6
+ # Load environment variables
7
+ load_dotenv()
8
+ api_key = os.getenv("GEMINI_API_KEY")
9
+
10
+ # Check if API key is set
11
+ if not api_key:
12
+ st.error("API key not found. Please set GEMINI_API_KEY in your .env file.")
13
+ st.stop()
14
+
15
+ # Configure the generative AI model
16
+ genai.configure(api_key=api_key)
17
+ generation_config = {
18
+ "temperature": 1,
19
+ "top_p": 0.95,
20
+ "top_k": 64,
21
+ "max_output_tokens": 8192,
22
+ "response_mime_type": "text/plain",
23
+ }
24
+
25
+ try:
26
+ model = genai.GenerativeModel(
27
+ model_name="gemini-1.5-flash",
28
+ generation_config=generation_config
29
+ )
30
+ except Exception as e:
31
+ st.error(f"Failed to load model: {str(e)}")
32
+ st.stop()
33
+
34
+ # Main function for Streamlit app
35
+ def main():
36
+ st.title("Career Path Recommendation System")
37
+
38
+ # List of questions for the user
39
+ questions = [
40
+ "Tell me about yourself. (Your characteristics, your preferred working environment, your likings, your dislikings, your team work nature, your dedication level etc.)",
41
+ "Tell me something about your career interests.",
42
+ "What types of work satisfy you most?",
43
+ "How many specific skills do you have and what are those?",
44
+ "Elaborate the best professional skill you have.",
45
+ "Elaborate the lowest professional skill you have.",
46
+ "What are your long-term goals?"
47
+ ]
48
+
49
+ # Collect user responses
50
+ responses = {q: st.text_area(q, "") for q in questions}
51
+
52
+ # Button to get recommendations
53
+ if st.button("Get Career Path Recommendation"):
54
+ if all(responses.values()):
55
+ with st.spinner("Generating recommendations..."):
56
+ try:
57
+ # Start chat session and send the message
58
+ chat_session = model.start_chat(
59
+ history=[{"role": "user", "parts": [{"text": f"{q}: {a}"} for q, a in responses.items()]}]
60
+ )
61
+ response = chat_session.send_message("Based on the answers provided, what career path should the user choose?")
62
+ recommendation = response.text.strip()
63
+
64
+ # Display the recommendation
65
+ st.subheader("Career Path Recommendation:")
66
+ st.write(recommendation)
67
+ except Exception as e:
68
+ st.error(f"An error occurred while generating recommendations: {str(e)}")
69
+ else:
70
+ st.error("Please answer all the questions to get a recommendation.")
71
+
72
+ # Run the app
73
+ if __name__ == "__main__":
74
+ main()
requirements.txt ADDED
Binary file (2.44 kB). View file