Spaces:
Sleeping
Sleeping
Upload 5 files
Browse files- app.py +102 -0
- requirements.txt +0 -0
- test_video_1.avi +0 -0
- test_video_2.avi +0 -0
- test_video_3.avi +0 -0
app.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from pytorchvideo.data.encoded_video import EncodedVideo
|
4 |
+
from pytorchvideo.transforms import UniformTemporalSubsample
|
5 |
+
from transformers import VideoMAEForVideoClassification
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import torchvision.transforms.functional as F_t # Changed import
|
8 |
+
|
9 |
+
# Check device
|
10 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
11 |
+
|
12 |
+
# Load pre-trained model
|
13 |
+
model_path = "model"
|
14 |
+
loaded_model = VideoMAEForVideoClassification.from_pretrained(model_path)
|
15 |
+
loaded_model = loaded_model.to(device)
|
16 |
+
loaded_model.eval()
|
17 |
+
|
18 |
+
# Label names for prediction
|
19 |
+
label_names = [
|
20 |
+
'Archery', 'BalanceBeam', 'BenchPress', 'ApplyEyeMakeup', 'BasketballDunk',
|
21 |
+
'BandMarching', 'BabyCrawling', 'ApplyLipstick', 'BaseballPitch', 'Basketball'
|
22 |
+
]
|
23 |
+
|
24 |
+
def load_video(video_path):
|
25 |
+
try:
|
26 |
+
video = EncodedVideo.from_path(video_path)
|
27 |
+
video_data = video.get_clip(start_sec=0, end_sec=video.duration)
|
28 |
+
return video_data['video']
|
29 |
+
except Exception as e:
|
30 |
+
raise ValueError(f"Error loading video: {str(e)}")
|
31 |
+
|
32 |
+
def preprocess_video(video_frames):
|
33 |
+
try:
|
34 |
+
# Temporal subsampling
|
35 |
+
transform_temporal = UniformTemporalSubsample(16)
|
36 |
+
video_frames = transform_temporal(video_frames)
|
37 |
+
|
38 |
+
# Convert to float and normalize to [0, 1]
|
39 |
+
video_frames = video_frames.float() / 255.0
|
40 |
+
|
41 |
+
# Ensure channel order is [T, C, H, W]
|
42 |
+
if video_frames.shape[0] == 3:
|
43 |
+
video_frames = video_frames.permute(1, 0, 2, 3)
|
44 |
+
|
45 |
+
# Normalize using torchvision's functional transform
|
46 |
+
mean = torch.tensor([0.485, 0.456, 0.406])
|
47 |
+
std = torch.tensor([0.229, 0.224, 0.225])
|
48 |
+
|
49 |
+
for t in range(video_frames.shape[0]):
|
50 |
+
video_frames[t] = F_t.normalize(video_frames[t], mean, std)
|
51 |
+
|
52 |
+
# Resize frames
|
53 |
+
video_frames = torch.stack([
|
54 |
+
F_t.resize(frame, [224, 224], antialias=True)
|
55 |
+
for frame in video_frames
|
56 |
+
])
|
57 |
+
|
58 |
+
# Add batch dimension
|
59 |
+
video_frames = video_frames.unsqueeze(0)
|
60 |
+
return video_frames
|
61 |
+
except Exception as e:
|
62 |
+
raise ValueError(f"Error preprocessing video: {str(e)}")
|
63 |
+
|
64 |
+
def predict_video(video):
|
65 |
+
try:
|
66 |
+
# Load and preprocess video
|
67 |
+
video_data = load_video(video)
|
68 |
+
processed_video = preprocess_video(video_data)
|
69 |
+
processed_video = processed_video.to(device)
|
70 |
+
|
71 |
+
# Make predictions
|
72 |
+
with torch.no_grad():
|
73 |
+
outputs = loaded_model(processed_video)
|
74 |
+
logits = outputs.logits
|
75 |
+
probabilities = F.softmax(logits, dim=-1)[0]
|
76 |
+
top_3 = torch.topk(probabilities, 3)
|
77 |
+
|
78 |
+
# Format results
|
79 |
+
results = [
|
80 |
+
f"{label_names[idx.item()]}: {prob.item():.2%}"
|
81 |
+
for idx, prob in zip(top_3.indices, top_3.values)
|
82 |
+
]
|
83 |
+
return "\n".join(results)
|
84 |
+
except Exception as e:
|
85 |
+
return f"Error processing video: {str(e)}"
|
86 |
+
|
87 |
+
# Gradio interface
|
88 |
+
iface = gr.Interface(
|
89 |
+
fn=predict_video,
|
90 |
+
inputs=gr.Video(label="Upload Video"),
|
91 |
+
outputs=gr.Textbox(label="Top 3 Predictions"),
|
92 |
+
title="Video Action Recognition",
|
93 |
+
description="Upload a video to classify the action being performed. The model will return the top 3 predictions.",
|
94 |
+
examples=[
|
95 |
+
["test_video_1.avi"],
|
96 |
+
["test_video_2.avi"],
|
97 |
+
["test_video_3.avi"]
|
98 |
+
]
|
99 |
+
)
|
100 |
+
|
101 |
+
if __name__ == "__main__":
|
102 |
+
iface.launch(debug=True, share=True)
|
requirements.txt
ADDED
Binary file (9.88 kB). View file
|
|
test_video_1.avi
ADDED
Binary file (279 kB). View file
|
|
test_video_2.avi
ADDED
Binary file (656 kB). View file
|
|
test_video_3.avi
ADDED
Binary file (497 kB). View file
|
|