m2m-100 / app.py
kevin-yang
add req.txt
f7d8311
import gradio as gr
import torch
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_1.2B")
tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_1.2B")
langs = """Afrikaans (af), Amharic (am), Arabic (ar), Asturian (ast), Azerbaijani (az), Bashkir (ba), Belarusian (be), Bulgarian (bg), Bengali (bn), Breton (br), Bosnian (bs), Catalan; Valencian (ca), Cebuano (ceb), Czech (cs), Welsh (cy), Danish (da), German (de), Greeek (el), English (en), Spanish (es), Estonian (et), Persian (fa), Fulah (ff), Finnish (fi), French (fr), Western Frisian (fy), Irish (ga), Gaelic; Scottish Gaelic (gd), Galician (gl), Gujarati (gu), Hausa (ha), Hebrew (he), Hindi (hi), Croatian (hr), Haitian; Haitian Creole (ht), Hungarian (hu), Armenian (hy), Indonesian (id), Igbo (ig), Iloko (ilo), Icelandic (is), Italian (it), Japanese (ja), Javanese (jv), Georgian (ka), Kazakh (kk), Central Khmer (km), Kannada (kn),
Korean (ko), Luxembourgish; Letzeburgesch (lb), Ganda (lg), Lingala (ln), Lao (lo), Lithuanian (lt), Latvian (lv), Malagasy (mg), Macedonian (mk), Malayalam (ml), Mongolian (mn), Marathi (mr), Malay (ms), Burmese (my), Nepali (ne), Dutch; Flemish (nl), Norwegian (no), Northern Sotho (ns), Occitan (post 1500) (oc), Oriya (or), Panjabi; Punjabi (pa), Polish (pl), Pushto; Pashto (ps), Portuguese (pt), Romanian; Moldavian; Moldovan (ro), Russian (ru), Sindhi (sd), Sinhala; Sinhalese (si), Slovak (sk),
Slovenian (sl), Somali (so), Albanian (sq), Serbian (sr), Swati (ss), Sundanese (su), Swedish (sv), Swahili (sw), Tamil (ta), Thai (th), Tagalog (tl), Tswana (tn),
Turkish (tr), Ukrainian (uk), Urdu (ur), Uzbek (uz), Vietnamese (vi), Wolof (wo), Xhosa (xh), Yiddish (yi), Yoruba (yo), Chinese (zh), Zulu (zu)"""
lang_list = [lang.strip() for lang in langs.split(',')]
examples = [["Korean (ko)", "English (en)", "μ—„λ§ˆνŒλ‹€λŠ” μƒˆλΌκ°€ μžˆλ„€."]]
def translate(src, tgt, text):
src = src.split(" ")[-1][1:-1]
tgt = tgt.split(" ")[-1][1:-1]
# translate
tokenizer.src_lang = src
encoded_src = tokenizer(text, return_tensors="pt")
generated_tokens = model.generate(**encoded_src, forced_bos_token_id=tokenizer.get_lang_id(tgt), use_cache=True)
result = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
return result
output_text = gr.outputs.Textbox()
gr.Interface(translate, inputs=[gr.inputs.Dropdown(lang_list, label="Source Language"), gr.inputs.Dropdown(lang_list, label="Target Language"), 'text'], outputs=output_text, title="Translate Between 100 languages",
description="M2M100-1.2B λͺ¨λΈμ„ 가지고 100κ°œκ΅­μ–΄ μ–Έμ–΄λ₯Ό λ²ˆμ—­ν•˜λŠ” 데λͺ¨νŽ˜μ΄μ§€ μž…λ‹ˆλ‹€.(a demo page that translate between 100 languages using M2M100-1.2B)",
examples=examples
).launch()