Spaces:
Running
Running
Jatin Mehra
commited on
Commit
·
0d7f003
1
Parent(s):
8d0a63e
Add Jupyter notebook for loading and analyzing RAG scores from CSV
Browse files- test_RAG.ipynb +295 -0
test_RAG.ipynb
ADDED
|
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"id": "81bb23ad",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [
|
| 9 |
+
{
|
| 10 |
+
"data": {
|
| 11 |
+
"text/html": [
|
| 12 |
+
"<div>\n",
|
| 13 |
+
"<style scoped>\n",
|
| 14 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 15 |
+
" vertical-align: middle;\n",
|
| 16 |
+
" }\n",
|
| 17 |
+
"\n",
|
| 18 |
+
" .dataframe tbody tr th {\n",
|
| 19 |
+
" vertical-align: top;\n",
|
| 20 |
+
" }\n",
|
| 21 |
+
"\n",
|
| 22 |
+
" .dataframe thead th {\n",
|
| 23 |
+
" text-align: right;\n",
|
| 24 |
+
" }\n",
|
| 25 |
+
"</style>\n",
|
| 26 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 27 |
+
" <thead>\n",
|
| 28 |
+
" <tr style=\"text-align: right;\">\n",
|
| 29 |
+
" <th></th>\n",
|
| 30 |
+
" <th>query</th>\n",
|
| 31 |
+
" <th>semantic_similarity</th>\n",
|
| 32 |
+
" <th>rougeL_f1</th>\n",
|
| 33 |
+
" <th>status</th>\n",
|
| 34 |
+
" </tr>\n",
|
| 35 |
+
" </thead>\n",
|
| 36 |
+
" <tbody>\n",
|
| 37 |
+
" <tr>\n",
|
| 38 |
+
" <th>0</th>\n",
|
| 39 |
+
" <td>What is the Berry Export Summary 2028 and what...</td>\n",
|
| 40 |
+
" <td>0.8763</td>\n",
|
| 41 |
+
" <td>0.3206</td>\n",
|
| 42 |
+
" <td>PASS</td>\n",
|
| 43 |
+
" </tr>\n",
|
| 44 |
+
" <tr>\n",
|
| 45 |
+
" <th>1</th>\n",
|
| 46 |
+
" <td>What are some of the benefits reported from ha...</td>\n",
|
| 47 |
+
" <td>0.9655</td>\n",
|
| 48 |
+
" <td>0.6016</td>\n",
|
| 49 |
+
" <td>PASS</td>\n",
|
| 50 |
+
" </tr>\n",
|
| 51 |
+
" <tr>\n",
|
| 52 |
+
" <th>2</th>\n",
|
| 53 |
+
" <td>What are the unique features of the Coolands f...</td>\n",
|
| 54 |
+
" <td>0.7942</td>\n",
|
| 55 |
+
" <td>0.2519</td>\n",
|
| 56 |
+
" <td>PASS</td>\n",
|
| 57 |
+
" </tr>\n",
|
| 58 |
+
" <tr>\n",
|
| 59 |
+
" <th>3</th>\n",
|
| 60 |
+
" <td>What is the main difference between the Nation...</td>\n",
|
| 61 |
+
" <td>0.9024</td>\n",
|
| 62 |
+
" <td>0.2597</td>\n",
|
| 63 |
+
" <td>PASS</td>\n",
|
| 64 |
+
" </tr>\n",
|
| 65 |
+
" <tr>\n",
|
| 66 |
+
" <th>4</th>\n",
|
| 67 |
+
" <td>How did Gunnar Nelson win the fight against Za...</td>\n",
|
| 68 |
+
" <td>0.8510</td>\n",
|
| 69 |
+
" <td>0.3101</td>\n",
|
| 70 |
+
" <td>PASS</td>\n",
|
| 71 |
+
" </tr>\n",
|
| 72 |
+
" <tr>\n",
|
| 73 |
+
" <th>5</th>\n",
|
| 74 |
+
" <td>What are some of the features of Fabiana Filip...</td>\n",
|
| 75 |
+
" <td>0.9099</td>\n",
|
| 76 |
+
" <td>0.2963</td>\n",
|
| 77 |
+
" <td>PASS</td>\n",
|
| 78 |
+
" </tr>\n",
|
| 79 |
+
" <tr>\n",
|
| 80 |
+
" <th>6</th>\n",
|
| 81 |
+
" <td>How did Dan Foley feel about his portrayal on ...</td>\n",
|
| 82 |
+
" <td>0.9170</td>\n",
|
| 83 |
+
" <td>0.4444</td>\n",
|
| 84 |
+
" <td>PASS</td>\n",
|
| 85 |
+
" </tr>\n",
|
| 86 |
+
" <tr>\n",
|
| 87 |
+
" <th>7</th>\n",
|
| 88 |
+
" <td>What is the reason for the closure of the comm...</td>\n",
|
| 89 |
+
" <td>0.8298</td>\n",
|
| 90 |
+
" <td>0.3636</td>\n",
|
| 91 |
+
" <td>PASS</td>\n",
|
| 92 |
+
" </tr>\n",
|
| 93 |
+
" <tr>\n",
|
| 94 |
+
" <th>8</th>\n",
|
| 95 |
+
" <td>What are the five love and relationship podcas...</td>\n",
|
| 96 |
+
" <td>0.7104</td>\n",
|
| 97 |
+
" <td>0.1860</td>\n",
|
| 98 |
+
" <td>FAIL</td>\n",
|
| 99 |
+
" </tr>\n",
|
| 100 |
+
" <tr>\n",
|
| 101 |
+
" <th>9</th>\n",
|
| 102 |
+
" <td>Which two teams dropped out of the Primal Ques...</td>\n",
|
| 103 |
+
" <td>0.9701</td>\n",
|
| 104 |
+
" <td>0.4258</td>\n",
|
| 105 |
+
" <td>PASS</td>\n",
|
| 106 |
+
" </tr>\n",
|
| 107 |
+
" </tbody>\n",
|
| 108 |
+
"</table>\n",
|
| 109 |
+
"</div>"
|
| 110 |
+
],
|
| 111 |
+
"text/plain": [
|
| 112 |
+
" query semantic_similarity \\\n",
|
| 113 |
+
"0 What is the Berry Export Summary 2028 and what... 0.8763 \n",
|
| 114 |
+
"1 What are some of the benefits reported from ha... 0.9655 \n",
|
| 115 |
+
"2 What are the unique features of the Coolands f... 0.7942 \n",
|
| 116 |
+
"3 What is the main difference between the Nation... 0.9024 \n",
|
| 117 |
+
"4 How did Gunnar Nelson win the fight against Za... 0.8510 \n",
|
| 118 |
+
"5 What are some of the features of Fabiana Filip... 0.9099 \n",
|
| 119 |
+
"6 How did Dan Foley feel about his portrayal on ... 0.9170 \n",
|
| 120 |
+
"7 What is the reason for the closure of the comm... 0.8298 \n",
|
| 121 |
+
"8 What are the five love and relationship podcas... 0.7104 \n",
|
| 122 |
+
"9 Which two teams dropped out of the Primal Ques... 0.9701 \n",
|
| 123 |
+
"\n",
|
| 124 |
+
" rougeL_f1 status \n",
|
| 125 |
+
"0 0.3206 PASS \n",
|
| 126 |
+
"1 0.6016 PASS \n",
|
| 127 |
+
"2 0.2519 PASS \n",
|
| 128 |
+
"3 0.2597 PASS \n",
|
| 129 |
+
"4 0.3101 PASS \n",
|
| 130 |
+
"5 0.2963 PASS \n",
|
| 131 |
+
"6 0.4444 PASS \n",
|
| 132 |
+
"7 0.3636 PASS \n",
|
| 133 |
+
"8 0.1860 FAIL \n",
|
| 134 |
+
"9 0.4258 PASS "
|
| 135 |
+
]
|
| 136 |
+
},
|
| 137 |
+
"execution_count": 1,
|
| 138 |
+
"metadata": {},
|
| 139 |
+
"output_type": "execute_result"
|
| 140 |
+
}
|
| 141 |
+
],
|
| 142 |
+
"source": [
|
| 143 |
+
"# Load scores from CSV\n",
|
| 144 |
+
"\n",
|
| 145 |
+
"import pandas as pd\n",
|
| 146 |
+
"\n",
|
| 147 |
+
"df = pd.read_csv(\"rag_scores.csv\")\n",
|
| 148 |
+
"\n",
|
| 149 |
+
"df.head(10)"
|
| 150 |
+
]
|
| 151 |
+
},
|
| 152 |
+
{
|
| 153 |
+
"cell_type": "code",
|
| 154 |
+
"execution_count": 2,
|
| 155 |
+
"id": "58e0482f",
|
| 156 |
+
"metadata": {},
|
| 157 |
+
"outputs": [
|
| 158 |
+
{
|
| 159 |
+
"data": {
|
| 160 |
+
"text/html": [
|
| 161 |
+
"<div>\n",
|
| 162 |
+
"<style scoped>\n",
|
| 163 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 164 |
+
" vertical-align: middle;\n",
|
| 165 |
+
" }\n",
|
| 166 |
+
"\n",
|
| 167 |
+
" .dataframe tbody tr th {\n",
|
| 168 |
+
" vertical-align: top;\n",
|
| 169 |
+
" }\n",
|
| 170 |
+
"\n",
|
| 171 |
+
" .dataframe thead th {\n",
|
| 172 |
+
" text-align: right;\n",
|
| 173 |
+
" }\n",
|
| 174 |
+
"</style>\n",
|
| 175 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 176 |
+
" <thead>\n",
|
| 177 |
+
" <tr style=\"text-align: right;\">\n",
|
| 178 |
+
" <th></th>\n",
|
| 179 |
+
" <th>semantic_similarity</th>\n",
|
| 180 |
+
" <th>rougeL_f1</th>\n",
|
| 181 |
+
" </tr>\n",
|
| 182 |
+
" </thead>\n",
|
| 183 |
+
" <tbody>\n",
|
| 184 |
+
" <tr>\n",
|
| 185 |
+
" <th>count</th>\n",
|
| 186 |
+
" <td>75.000000</td>\n",
|
| 187 |
+
" <td>75.000000</td>\n",
|
| 188 |
+
" </tr>\n",
|
| 189 |
+
" <tr>\n",
|
| 190 |
+
" <th>mean</th>\n",
|
| 191 |
+
" <td>0.852692</td>\n",
|
| 192 |
+
" <td>0.395061</td>\n",
|
| 193 |
+
" </tr>\n",
|
| 194 |
+
" <tr>\n",
|
| 195 |
+
" <th>std</th>\n",
|
| 196 |
+
" <td>0.088759</td>\n",
|
| 197 |
+
" <td>0.216511</td>\n",
|
| 198 |
+
" </tr>\n",
|
| 199 |
+
" <tr>\n",
|
| 200 |
+
" <th>min</th>\n",
|
| 201 |
+
" <td>0.591500</td>\n",
|
| 202 |
+
" <td>0.098600</td>\n",
|
| 203 |
+
" </tr>\n",
|
| 204 |
+
" <tr>\n",
|
| 205 |
+
" <th>25%</th>\n",
|
| 206 |
+
" <td>0.794600</td>\n",
|
| 207 |
+
" <td>0.251600</td>\n",
|
| 208 |
+
" </tr>\n",
|
| 209 |
+
" <tr>\n",
|
| 210 |
+
" <th>50%</th>\n",
|
| 211 |
+
" <td>0.873200</td>\n",
|
| 212 |
+
" <td>0.325600</td>\n",
|
| 213 |
+
" </tr>\n",
|
| 214 |
+
" <tr>\n",
|
| 215 |
+
" <th>75%</th>\n",
|
| 216 |
+
" <td>0.918150</td>\n",
|
| 217 |
+
" <td>0.495100</td>\n",
|
| 218 |
+
" </tr>\n",
|
| 219 |
+
" <tr>\n",
|
| 220 |
+
" <th>max</th>\n",
|
| 221 |
+
" <td>1.000000</td>\n",
|
| 222 |
+
" <td>1.000000</td>\n",
|
| 223 |
+
" </tr>\n",
|
| 224 |
+
" </tbody>\n",
|
| 225 |
+
"</table>\n",
|
| 226 |
+
"</div>"
|
| 227 |
+
],
|
| 228 |
+
"text/plain": [
|
| 229 |
+
" semantic_similarity rougeL_f1\n",
|
| 230 |
+
"count 75.000000 75.000000\n",
|
| 231 |
+
"mean 0.852692 0.395061\n",
|
| 232 |
+
"std 0.088759 0.216511\n",
|
| 233 |
+
"min 0.591500 0.098600\n",
|
| 234 |
+
"25% 0.794600 0.251600\n",
|
| 235 |
+
"50% 0.873200 0.325600\n",
|
| 236 |
+
"75% 0.918150 0.495100\n",
|
| 237 |
+
"max 1.000000 1.000000"
|
| 238 |
+
]
|
| 239 |
+
},
|
| 240 |
+
"execution_count": 2,
|
| 241 |
+
"metadata": {},
|
| 242 |
+
"output_type": "execute_result"
|
| 243 |
+
}
|
| 244 |
+
],
|
| 245 |
+
"source": [
|
| 246 |
+
"df.describe()"
|
| 247 |
+
]
|
| 248 |
+
},
|
| 249 |
+
{
|
| 250 |
+
"cell_type": "code",
|
| 251 |
+
"execution_count": 3,
|
| 252 |
+
"id": "a9073d52",
|
| 253 |
+
"metadata": {},
|
| 254 |
+
"outputs": [
|
| 255 |
+
{
|
| 256 |
+
"data": {
|
| 257 |
+
"text/plain": [
|
| 258 |
+
"status\n",
|
| 259 |
+
"PASS 64\n",
|
| 260 |
+
"FAIL 11\n",
|
| 261 |
+
"Name: count, dtype: int64"
|
| 262 |
+
]
|
| 263 |
+
},
|
| 264 |
+
"execution_count": 3,
|
| 265 |
+
"metadata": {},
|
| 266 |
+
"output_type": "execute_result"
|
| 267 |
+
}
|
| 268 |
+
],
|
| 269 |
+
"source": [
|
| 270 |
+
"df['status'].value_counts()"
|
| 271 |
+
]
|
| 272 |
+
}
|
| 273 |
+
],
|
| 274 |
+
"metadata": {
|
| 275 |
+
"kernelspec": {
|
| 276 |
+
"display_name": ".venv",
|
| 277 |
+
"language": "python",
|
| 278 |
+
"name": "python3"
|
| 279 |
+
},
|
| 280 |
+
"language_info": {
|
| 281 |
+
"codemirror_mode": {
|
| 282 |
+
"name": "ipython",
|
| 283 |
+
"version": 3
|
| 284 |
+
},
|
| 285 |
+
"file_extension": ".py",
|
| 286 |
+
"mimetype": "text/x-python",
|
| 287 |
+
"name": "python",
|
| 288 |
+
"nbconvert_exporter": "python",
|
| 289 |
+
"pygments_lexer": "ipython3",
|
| 290 |
+
"version": "3.12.1"
|
| 291 |
+
}
|
| 292 |
+
},
|
| 293 |
+
"nbformat": 4,
|
| 294 |
+
"nbformat_minor": 5
|
| 295 |
+
}
|