jaydenccc's picture
Update app.py
8390662
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
peft_model_id = f"jaydenccc/AI_Storyteller"
config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForCausalLM.from_pretrained(
config.base_model_name_or_path,
return_dict=True,
load_in_8bit=True,
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id)
def make_inference(synopsis):
batch = tokenizer(
f"Below is a one-sentence synopsis, please write a captivating short story based on this synopsis.\n\n### Synopsis:\n{synopsis}\n\n### Short Story:\n", return_tensors='pt',
)
with torch.cuda.amp.autocast():
output_tokens = model.generate(**batch, max_new_tokens=400, temperature = 0.9)
full_output = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
short_story = full_output.split("### Short Story:\n")[-1].strip()
return short_story
if __name__ == "__main__":
# make a gradio interface
import gradio as gr
gr.Interface(
make_inference,
[
gr.inputs.Textbox(lines=1, label="One-Sentence Plot"),
],
gr.outputs.Textbox(label="Short Story"),
title="AI-Storyteller",
description="AI-Storyteller is a bot that writes short stories given a one-sentence synopsis",
).launch()