Spaces:
Runtime error
Runtime error
import torch | |
from peft import PeftModel, PeftConfig | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
peft_model_id = f"jaydenccc/AI_Storyteller" | |
config = PeftConfig.from_pretrained(peft_model_id) | |
model = AutoModelForCausalLM.from_pretrained( | |
config.base_model_name_or_path, | |
return_dict=True, | |
load_in_8bit=True, | |
device_map="auto", | |
) | |
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) | |
# Load the Lora model | |
model = PeftModel.from_pretrained(model, peft_model_id) | |
def make_inference(synopsis): | |
batch = tokenizer( | |
f"Below is a one-sentence synopsis, please write a captivating short story based on this synopsis.\n\n### Synopsis:\n{synopsis}\n\n### Short Story:\n", return_tensors='pt', | |
) | |
with torch.cuda.amp.autocast(): | |
output_tokens = model.generate(**batch, max_new_tokens=400, temperature = 0.9) | |
full_output = tokenizer.decode(output_tokens[0], skip_special_tokens=True) | |
short_story = full_output.split("### Short Story:\n")[-1].strip() | |
return short_story | |
if __name__ == "__main__": | |
# make a gradio interface | |
import gradio as gr | |
gr.Interface( | |
make_inference, | |
[ | |
gr.inputs.Textbox(lines=1, label="One-Sentence Plot"), | |
], | |
gr.outputs.Textbox(label="Short Story"), | |
title="AI-Storyteller", | |
description="AI-Storyteller is a bot that writes short stories given a one-sentence synopsis", | |
).launch() |