Spaces:
Runtime error
Runtime error
| import torch | |
| from peft import PeftModel, PeftConfig | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| peft_model_id = f"jaydenccc/AI_Storyteller" | |
| config = PeftConfig.from_pretrained(peft_model_id) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| config.base_model_name_or_path, | |
| return_dict=True, | |
| load_in_8bit=True, | |
| device_map="auto", | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) | |
| # Load the Lora model | |
| model = PeftModel.from_pretrained(model, peft_model_id) | |
| def make_inference(synopsis): | |
| batch = tokenizer( | |
| f"Below is a one-sentence synopsis, please write a captivating short story based on this synopsis.\n\n### Synopsis:\n{synopsis}\n\n### Short Story:\n", return_tensors='pt', | |
| ) | |
| with torch.cuda.amp.autocast(): | |
| output_tokens = model.generate(**batch, max_new_tokens=400, temperature = 0.9) | |
| full_output = tokenizer.decode(output_tokens[0], skip_special_tokens=True) | |
| short_story = full_output.split("### Short Story:\n")[-1].strip() | |
| return short_story | |
| if __name__ == "__main__": | |
| # make a gradio interface | |
| import gradio as gr | |
| gr.Interface( | |
| make_inference, | |
| [ | |
| gr.inputs.Textbox(lines=1, label="One-Sentence Plot"), | |
| ], | |
| gr.outputs.Textbox(label="Short Story"), | |
| title="AI-Storyteller", | |
| description="AI-Storyteller is a bot that writes short stories given a one-sentence synopsis", | |
| ).launch() |