import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer peft_model_id = f"jaydenccc/AI_Storyteller" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForCausalLM.from_pretrained( config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map="auto", ) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # Load the Lora model model = PeftModel.from_pretrained(model, peft_model_id) def make_inference(synopsis): batch = tokenizer( f"Below is a one-sentence synopsis, please write a captivating short story based on this synopsis.\n\n### Synopsis:\n{synopsis}\n\n### Short Story:\n", return_tensors='pt', ) with torch.cuda.amp.autocast(): output_tokens = model.generate(**batch, max_new_tokens=400, temperature = 0.9) full_output = tokenizer.decode(output_tokens[0], skip_special_tokens=True) short_story = full_output.split("### Short Story:\n")[-1].strip() return short_story if __name__ == "__main__": # make a gradio interface import gradio as gr gr.Interface( make_inference, [ gr.inputs.Textbox(lines=1, label="One-Sentence Plot"), ], gr.outputs.Textbox(label="Short Story"), title="AI-Storyteller", description="AI-Storyteller is a bot that writes short stories given a one-sentence synopsis", ).launch()