Spaces:
Paused
Paused
| import contextlib | |
| import warnings | |
| import torch | |
| from torch import autograd | |
| from torch.nn import functional as F | |
| enabled = True | |
| weight_gradients_disabled = False | |
| def no_weight_gradients(): | |
| global weight_gradients_disabled | |
| old = weight_gradients_disabled | |
| weight_gradients_disabled = True | |
| yield | |
| weight_gradients_disabled = old | |
| def conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1): | |
| if could_use_op(input): | |
| return conv2d_gradfix( | |
| transpose=False, | |
| weight_shape=weight.shape, | |
| stride=stride, | |
| padding=padding, | |
| output_padding=0, | |
| dilation=dilation, | |
| groups=groups, | |
| ).apply(input, weight, bias) | |
| return F.conv2d( | |
| input=input, | |
| weight=weight, | |
| bias=bias, | |
| stride=stride, | |
| padding=padding, | |
| dilation=dilation, | |
| groups=groups, | |
| ) | |
| def conv_transpose2d( | |
| input, | |
| weight, | |
| bias=None, | |
| stride=1, | |
| padding=0, | |
| output_padding=0, | |
| groups=1, | |
| dilation=1, | |
| ): | |
| if could_use_op(input): | |
| return conv2d_gradfix( | |
| transpose=True, | |
| weight_shape=weight.shape, | |
| stride=stride, | |
| padding=padding, | |
| output_padding=output_padding, | |
| groups=groups, | |
| dilation=dilation, | |
| ).apply(input, weight, bias) | |
| return F.conv_transpose2d( | |
| input=input, | |
| weight=weight, | |
| bias=bias, | |
| stride=stride, | |
| padding=padding, | |
| output_padding=output_padding, | |
| dilation=dilation, | |
| groups=groups, | |
| ) | |
| def could_use_op(input): | |
| if (not enabled) or (not torch.backends.cudnn.enabled): | |
| return False | |
| if input.device.type != "cuda": | |
| return False | |
| if any(torch.__version__.startswith(x) for x in ["1.7.", "1.8."]): | |
| return True | |
| warnings.warn( | |
| f"conv2d_gradfix not supported on PyTorch {torch.__version__}. Falling back to torch.nn.functional.conv2d()." | |
| ) | |
| return False | |
| def ensure_tuple(xs, ndim): | |
| xs = tuple(xs) if isinstance(xs, (tuple, list)) else (xs,) * ndim | |
| return xs | |
| conv2d_gradfix_cache = dict() | |
| def conv2d_gradfix( | |
| transpose, weight_shape, stride, padding, output_padding, dilation, groups | |
| ): | |
| ndim = 2 | |
| weight_shape = tuple(weight_shape) | |
| stride = ensure_tuple(stride, ndim) | |
| padding = ensure_tuple(padding, ndim) | |
| output_padding = ensure_tuple(output_padding, ndim) | |
| dilation = ensure_tuple(dilation, ndim) | |
| key = (transpose, weight_shape, stride, padding, output_padding, dilation, groups) | |
| if key in conv2d_gradfix_cache: | |
| return conv2d_gradfix_cache[key] | |
| common_kwargs = dict( | |
| stride=stride, padding=padding, dilation=dilation, groups=groups | |
| ) | |
| def calc_output_padding(input_shape, output_shape): | |
| if transpose: | |
| return [0, 0] | |
| return [ | |
| input_shape[i + 2] | |
| - (output_shape[i + 2] - 1) * stride[i] | |
| - (1 - 2 * padding[i]) | |
| - dilation[i] * (weight_shape[i + 2] - 1) | |
| for i in range(ndim) | |
| ] | |
| class Conv2d(autograd.Function): | |
| def forward(ctx, input, weight, bias): | |
| if not transpose: | |
| out = F.conv2d(input=input, weight=weight, bias=bias, **common_kwargs) | |
| else: | |
| out = F.conv_transpose2d( | |
| input=input, | |
| weight=weight, | |
| bias=bias, | |
| output_padding=output_padding, | |
| **common_kwargs, | |
| ) | |
| ctx.save_for_backward(input, weight) | |
| return out | |
| def backward(ctx, grad_output): | |
| input, weight = ctx.saved_tensors | |
| grad_input, grad_weight, grad_bias = None, None, None | |
| if ctx.needs_input_grad[0]: | |
| p = calc_output_padding( | |
| input_shape=input.shape, output_shape=grad_output.shape | |
| ) | |
| grad_input = conv2d_gradfix( | |
| transpose=(not transpose), | |
| weight_shape=weight_shape, | |
| output_padding=p, | |
| **common_kwargs, | |
| ).apply(grad_output, weight, None) | |
| if ctx.needs_input_grad[1] and not weight_gradients_disabled: | |
| grad_weight = Conv2dGradWeight.apply(grad_output, input) | |
| if ctx.needs_input_grad[2]: | |
| grad_bias = grad_output.sum((0, 2, 3)) | |
| return grad_input, grad_weight, grad_bias | |
| class Conv2dGradWeight(autograd.Function): | |
| def forward(ctx, grad_output, input): | |
| op = torch._C._jit_get_operation( | |
| "aten::cudnn_convolution_backward_weight" | |
| if not transpose | |
| else "aten::cudnn_convolution_transpose_backward_weight" | |
| ) | |
| flags = [ | |
| torch.backends.cudnn.benchmark, | |
| torch.backends.cudnn.deterministic, | |
| torch.backends.cudnn.allow_tf32, | |
| ] | |
| grad_weight = op( | |
| weight_shape, | |
| grad_output, | |
| input, | |
| padding, | |
| stride, | |
| dilation, | |
| groups, | |
| *flags, | |
| ) | |
| ctx.save_for_backward(grad_output, input) | |
| return grad_weight | |
| def backward(ctx, grad_grad_weight): | |
| grad_output, input = ctx.saved_tensors | |
| grad_grad_output, grad_grad_input = None, None | |
| if ctx.needs_input_grad[0]: | |
| grad_grad_output = Conv2d.apply(input, grad_grad_weight, None) | |
| if ctx.needs_input_grad[1]: | |
| p = calc_output_padding( | |
| input_shape=input.shape, output_shape=grad_output.shape | |
| ) | |
| grad_grad_input = conv2d_gradfix( | |
| transpose=(not transpose), | |
| weight_shape=weight_shape, | |
| output_padding=p, | |
| **common_kwargs, | |
| ).apply(grad_output, grad_grad_weight, None) | |
| return grad_grad_output, grad_grad_input | |
| conv2d_gradfix_cache[key] = Conv2d | |
| return Conv2d | |