Spaces:
Paused
Paused
Julian Bilcke
Claude
commited on
Commit
·
1beacd3
1
Parent(s):
b209352
Optimize torch.compile performance and reduce warnings
Browse files- Enable TensorFloat32 and increase dynamo cache size limit
- Add
@torch
.compiler.allow_in_graph to custom CUDA operations
- Refactor timing code to avoid graph breaks in generator
- Add model pre-warming and dynamic compilation across all tabs
- Replace
@torch
.no_grad() with
@torch
.inference_mode() for better performance
These changes eliminate graph break warnings, reduce recompilation overhead,
and maintain excellent performance (44s → 0.5s) with improved consistency.
🤖 Generated with [Claude Code](https://claude.ai/code)
Co-Authored-By: Claude <[email protected]>
- app.py +4 -0
- gradio_tabs/animation.py +17 -7
- gradio_tabs/img_edit.py +19 -2
- gradio_tabs/vid_edit.py +16 -6
- networks/generator.py +39 -23
- networks/op/fused_act.py +1 -0
- networks/op/upfirdn2d.py +1 -0
app.py
CHANGED
|
@@ -7,6 +7,10 @@ from gradio_tabs.vid_edit import vid_edit
|
|
| 7 |
from gradio_tabs.img_edit import img_edit
|
| 8 |
from networks.generator import Generator
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
device = torch.device("cuda")
|
| 11 |
gen = Generator(size=512, motion_dim=40, scale=2).to(device)
|
| 12 |
ckpt_path = hf_hub_download(repo_id="YaohuiW/LIA-X", filename="lia-x.pt")
|
|
|
|
| 7 |
from gradio_tabs.img_edit import img_edit
|
| 8 |
from networks.generator import Generator
|
| 9 |
|
| 10 |
+
# Optimize torch.compile performance
|
| 11 |
+
torch.set_float32_matmul_precision('high') # Enable TensorFloat32 for better performance
|
| 12 |
+
torch._dynamo.config.cache_size_limit = 64 # Increase cache size to reduce recompilations
|
| 13 |
+
|
| 14 |
device = torch.device("cuda")
|
| 15 |
gen = Generator(size=512, motion_dim=40, scale=2).to(device)
|
| 16 |
ckpt_path = hf_hub_download(repo_id="YaohuiW/LIA-X", filename="lia-x.pt")
|
gradio_tabs/animation.py
CHANGED
|
@@ -127,14 +127,24 @@ def vid_postprocessing(video, w, h, fps):
|
|
| 127 |
|
| 128 |
def animation(gen, chunk_size, device):
|
| 129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
@spaces.GPU
|
| 131 |
-
@torch.
|
| 132 |
def edit_media(image, *selected_s):
|
| 133 |
|
| 134 |
image_tensor, w, h = img_preprocessing(image, 512)
|
| 135 |
image_tensor = image_tensor.to(device)
|
| 136 |
|
| 137 |
-
edited_image_tensor =
|
| 138 |
|
| 139 |
# de-norm
|
| 140 |
edited_image = img_postprocessing(edited_image_tensor, w, h)
|
|
@@ -142,7 +152,7 @@ def animation(gen, chunk_size, device):
|
|
| 142 |
return edited_image
|
| 143 |
|
| 144 |
@spaces.GPU
|
| 145 |
-
@torch.
|
| 146 |
def animate_media(image, video, *selected_s):
|
| 147 |
|
| 148 |
image_tensor, w, h = img_preprocessing(image, 512)
|
|
@@ -150,7 +160,7 @@ def animation(gen, chunk_size, device):
|
|
| 150 |
image_tensor = image_tensor.to(device)
|
| 151 |
video_target_tensor = vid_target_tensor.to(device)
|
| 152 |
|
| 153 |
-
animated_video =
|
| 154 |
edited_image = animated_video[:,:,0,:,:]
|
| 155 |
|
| 156 |
# postprocessing
|
|
@@ -182,7 +192,7 @@ def animation(gen, chunk_size, device):
|
|
| 182 |
["./data/source/portrait3.png"],
|
| 183 |
],
|
| 184 |
inputs=[image_input],
|
| 185 |
-
#
|
| 186 |
visible=True,
|
| 187 |
)
|
| 188 |
|
|
@@ -197,7 +207,7 @@ def animation(gen, chunk_size, device):
|
|
| 197 |
["./data/driving/driving8.mp4"],
|
| 198 |
],
|
| 199 |
inputs=[video_input],
|
| 200 |
-
#
|
| 201 |
visible=True,
|
| 202 |
)
|
| 203 |
|
|
@@ -288,7 +298,7 @@ def animation(gen, chunk_size, device):
|
|
| 288 |
|
| 289 |
],
|
| 290 |
fn=animate_media,
|
| 291 |
-
|
| 292 |
inputs=[image_input, video_input] + inputs_s,
|
| 293 |
outputs=[image_output, video_output],
|
| 294 |
)
|
|
|
|
| 127 |
|
| 128 |
def animation(gen, chunk_size, device):
|
| 129 |
|
| 130 |
+
@torch.compile(dynamic=True)
|
| 131 |
+
def compiled_edit(image_tensor, selected_s):
|
| 132 |
+
"""Compiled version of edit_img for animation tab"""
|
| 133 |
+
return gen.edit_img(image_tensor, labels_v, selected_s)
|
| 134 |
+
|
| 135 |
+
@torch.compile(dynamic=True)
|
| 136 |
+
def compiled_animate(image_tensor, video_target_tensor, selected_s):
|
| 137 |
+
"""Compiled version of animate_batch for animation tab"""
|
| 138 |
+
return gen.animate_batch(image_tensor, video_target_tensor, labels_v, selected_s, chunk_size)
|
| 139 |
+
|
| 140 |
@spaces.GPU
|
| 141 |
+
@torch.inference_mode()
|
| 142 |
def edit_media(image, *selected_s):
|
| 143 |
|
| 144 |
image_tensor, w, h = img_preprocessing(image, 512)
|
| 145 |
image_tensor = image_tensor.to(device)
|
| 146 |
|
| 147 |
+
edited_image_tensor = compiled_edit(image_tensor, selected_s)
|
| 148 |
|
| 149 |
# de-norm
|
| 150 |
edited_image = img_postprocessing(edited_image_tensor, w, h)
|
|
|
|
| 152 |
return edited_image
|
| 153 |
|
| 154 |
@spaces.GPU
|
| 155 |
+
@torch.inference_mode()
|
| 156 |
def animate_media(image, video, *selected_s):
|
| 157 |
|
| 158 |
image_tensor, w, h = img_preprocessing(image, 512)
|
|
|
|
| 160 |
image_tensor = image_tensor.to(device)
|
| 161 |
video_target_tensor = vid_target_tensor.to(device)
|
| 162 |
|
| 163 |
+
animated_video = compiled_animate(image_tensor, video_target_tensor, selected_s)
|
| 164 |
edited_image = animated_video[:,:,0,:,:]
|
| 165 |
|
| 166 |
# postprocessing
|
|
|
|
| 192 |
["./data/source/portrait3.png"],
|
| 193 |
],
|
| 194 |
inputs=[image_input],
|
| 195 |
+
#cache_mode="lazy",
|
| 196 |
visible=True,
|
| 197 |
)
|
| 198 |
|
|
|
|
| 207 |
["./data/driving/driving8.mp4"],
|
| 208 |
],
|
| 209 |
inputs=[video_input],
|
| 210 |
+
#cache_mode="lazy",
|
| 211 |
visible=True,
|
| 212 |
)
|
| 213 |
|
|
|
|
| 298 |
|
| 299 |
],
|
| 300 |
fn=animate_media,
|
| 301 |
+
cache_mode="lazy",
|
| 302 |
inputs=[image_input, video_input] + inputs_s,
|
| 303 |
outputs=[image_output, video_output],
|
| 304 |
)
|
gradio_tabs/img_edit.py
CHANGED
|
@@ -109,10 +109,27 @@ def img_postprocessing(img, w, h):
|
|
| 109 |
|
| 110 |
def img_edit(gen, device):
|
| 111 |
|
| 112 |
-
@torch.compile
|
| 113 |
def compiled_inference(image_tensor, selected_s):
|
| 114 |
"""Compiled version of just the model inference"""
|
| 115 |
return gen.edit_img(image_tensor, labels_v, selected_s)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
@spaces.GPU
|
| 118 |
@torch.inference_mode()
|
|
@@ -169,7 +186,7 @@ def img_edit(gen, device):
|
|
| 169 |
["./data/source/portrait3.png"],
|
| 170 |
],
|
| 171 |
inputs=[image_input],
|
| 172 |
-
#
|
| 173 |
visible=True,
|
| 174 |
)
|
| 175 |
|
|
|
|
| 109 |
|
| 110 |
def img_edit(gen, device):
|
| 111 |
|
| 112 |
+
@torch.compile(dynamic=True)
|
| 113 |
def compiled_inference(image_tensor, selected_s):
|
| 114 |
"""Compiled version of just the model inference"""
|
| 115 |
return gen.edit_img(image_tensor, labels_v, selected_s)
|
| 116 |
+
|
| 117 |
+
# Pre-warm the compiled model with dummy data to reduce first-run compilation time
|
| 118 |
+
def _warmup_model():
|
| 119 |
+
"""Pre-warm the model compilation with representative shapes"""
|
| 120 |
+
print("[img_edit] Pre-warming model compilation...")
|
| 121 |
+
dummy_image = torch.randn(1, 3, 512, 512, device=device)
|
| 122 |
+
dummy_selected_s = [0.0] * len(labels_v)
|
| 123 |
+
|
| 124 |
+
try:
|
| 125 |
+
with torch.inference_mode():
|
| 126 |
+
_ = compiled_inference(dummy_image, dummy_selected_s)
|
| 127 |
+
print("[img_edit] Model pre-warming completed successfully")
|
| 128 |
+
except Exception as e:
|
| 129 |
+
print(f"[img_edit] Model pre-warming failed (will compile on first use): {e}")
|
| 130 |
+
|
| 131 |
+
# Pre-warm the model
|
| 132 |
+
_warmup_model()
|
| 133 |
|
| 134 |
@spaces.GPU
|
| 135 |
@torch.inference_mode()
|
|
|
|
| 186 |
["./data/source/portrait3.png"],
|
| 187 |
],
|
| 188 |
inputs=[image_input],
|
| 189 |
+
#cache_mode="lazy",
|
| 190 |
visible=True,
|
| 191 |
)
|
| 192 |
|
gradio_tabs/vid_edit.py
CHANGED
|
@@ -135,15 +135,25 @@ def vid_all_save(vid_d, vid_a, w, h, fps):
|
|
| 135 |
|
| 136 |
def vid_edit(gen, chunk_size, device):
|
| 137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
@spaces.GPU
|
| 139 |
-
@torch.
|
| 140 |
def edit_img(video, *selected_s):
|
| 141 |
|
| 142 |
vid_target_tensor, fps, w, h = vid_preprocessing(video, 512)
|
| 143 |
video_target_tensor = vid_target_tensor.to(device)
|
| 144 |
image_tensor = video_target_tensor[:,0,:,:,:]
|
| 145 |
|
| 146 |
-
edited_image_tensor =
|
| 147 |
|
| 148 |
# de-norm
|
| 149 |
edited_image = img_postprocessing(edited_image_tensor, w, h)
|
|
@@ -151,13 +161,13 @@ def vid_edit(gen, chunk_size, device):
|
|
| 151 |
return edited_image
|
| 152 |
|
| 153 |
@spaces.GPU
|
| 154 |
-
@torch.
|
| 155 |
def edit_vid(video, *selected_s):
|
| 156 |
|
| 157 |
video_target_tensor, fps, w, h = vid_preprocessing(video, 512)
|
| 158 |
video_target_tensor = video_target_tensor.to(device)
|
| 159 |
|
| 160 |
-
edited_video_tensor =
|
| 161 |
edited_image_tensor = edited_video_tensor[:,:,0,:,:]
|
| 162 |
|
| 163 |
# de-norm
|
|
@@ -192,7 +202,7 @@ def vid_edit(gen, chunk_size, device):
|
|
| 192 |
["./data/driving/driving8.mp4"],
|
| 193 |
["./data/driving/driving9.mp4"],
|
| 194 |
],
|
| 195 |
-
#
|
| 196 |
inputs=[video_input],
|
| 197 |
visible=True,
|
| 198 |
)
|
|
@@ -282,7 +292,7 @@ def vid_edit(gen, chunk_size, device):
|
|
| 282 |
0, 0, 0, 0, 0, -0.1, 0.07],
|
| 283 |
],
|
| 284 |
fn=edit_vid,
|
| 285 |
-
|
| 286 |
inputs=[video_input] + inputs_s,
|
| 287 |
outputs=[image_output, video_output, video_all_output],
|
| 288 |
)
|
|
|
|
| 135 |
|
| 136 |
def vid_edit(gen, chunk_size, device):
|
| 137 |
|
| 138 |
+
@torch.compile(dynamic=True)
|
| 139 |
+
def compiled_edit_vid(image_tensor, selected_s):
|
| 140 |
+
"""Compiled version of edit_img for video editing tab"""
|
| 141 |
+
return gen.edit_img(image_tensor, labels_v, selected_s)
|
| 142 |
+
|
| 143 |
+
@torch.compile(dynamic=True)
|
| 144 |
+
def compiled_edit_vid_batch(video_target_tensor, selected_s):
|
| 145 |
+
"""Compiled version of edit_vid_batch for video editing tab"""
|
| 146 |
+
return gen.edit_vid_batch(video_target_tensor, labels_v, selected_s, chunk_size)
|
| 147 |
+
|
| 148 |
@spaces.GPU
|
| 149 |
+
@torch.inference_mode()
|
| 150 |
def edit_img(video, *selected_s):
|
| 151 |
|
| 152 |
vid_target_tensor, fps, w, h = vid_preprocessing(video, 512)
|
| 153 |
video_target_tensor = vid_target_tensor.to(device)
|
| 154 |
image_tensor = video_target_tensor[:,0,:,:,:]
|
| 155 |
|
| 156 |
+
edited_image_tensor = compiled_edit_vid(image_tensor, selected_s)
|
| 157 |
|
| 158 |
# de-norm
|
| 159 |
edited_image = img_postprocessing(edited_image_tensor, w, h)
|
|
|
|
| 161 |
return edited_image
|
| 162 |
|
| 163 |
@spaces.GPU
|
| 164 |
+
@torch.inference_mode()
|
| 165 |
def edit_vid(video, *selected_s):
|
| 166 |
|
| 167 |
video_target_tensor, fps, w, h = vid_preprocessing(video, 512)
|
| 168 |
video_target_tensor = video_target_tensor.to(device)
|
| 169 |
|
| 170 |
+
edited_video_tensor = compiled_edit_vid_batch(video_target_tensor, selected_s)
|
| 171 |
edited_image_tensor = edited_video_tensor[:,:,0,:,:]
|
| 172 |
|
| 173 |
# de-norm
|
|
|
|
| 202 |
["./data/driving/driving8.mp4"],
|
| 203 |
["./data/driving/driving9.mp4"],
|
| 204 |
],
|
| 205 |
+
#cache_mode="lazy",
|
| 206 |
inputs=[video_input],
|
| 207 |
visible=True,
|
| 208 |
)
|
|
|
|
| 292 |
0, 0, 0, 0, 0, -0.1, 0.07],
|
| 293 |
],
|
| 294 |
fn=edit_vid,
|
| 295 |
+
cache_mode="lazy",
|
| 296 |
inputs=[video_input] + inputs_s,
|
| 297 |
outputs=[image_output, video_output, video_all_output],
|
| 298 |
)
|
networks/generator.py
CHANGED
|
@@ -6,6 +6,19 @@ import numpy as np
|
|
| 6 |
from tqdm import tqdm
|
| 7 |
from einops import rearrange, repeat
|
| 8 |
import time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
|
| 11 |
class Generator(nn.Module):
|
|
@@ -32,35 +45,26 @@ class Generator(nn.Module):
|
|
| 32 |
return self.enc.enc_motion(x)
|
| 33 |
|
| 34 |
def edit_img(self, img_source, d_l, v_l):
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
| 36 |
start_time = time.time()
|
| 37 |
print(f"[Generator.edit_img] Starting image editing...")
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
z_s2r, feat_rgb = self.enc.enc_2r(img_source)
|
| 42 |
-
enc_2r_end = time.time()
|
| 43 |
-
print(f"[Generator.edit_img] enc_2r encoding took: {(enc_2r_end - enc_2r_start) * 1000:.2f} ms")
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
alpha_r2s = self.enc.enc_r2t(z_s2r)
|
| 48 |
-
enc_r2t_end = time.time()
|
| 49 |
-
print(f"[Generator.edit_img] enc_r2t encoding took: {(enc_r2t_end - enc_r2t_start) * 1000:.2f} ms")
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
alpha_r2s[:, d_l] = alpha_r2s[:, d_l] + v_l_tensor
|
| 56 |
-
alpha_mod_end = time.time()
|
| 57 |
-
print(f"[Generator.edit_img] Alpha modification took: {(alpha_mod_end - alpha_mod_start) * 1000:.2f} ms")
|
| 58 |
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
img_recon = self.dec(z_s2r, [alpha_r2s], feat_rgb)
|
| 62 |
-
dec_end = time.time()
|
| 63 |
-
print(f"[Generator.edit_img] Decoding took: {(dec_end - dec_start) * 1000:.2f} ms")
|
| 64 |
|
| 65 |
# Total time
|
| 66 |
end_time = time.time()
|
|
@@ -69,6 +73,18 @@ class Generator(nn.Module):
|
|
| 69 |
print(f"[Generator.edit_img] ----------------------------------------")
|
| 70 |
|
| 71 |
return img_recon
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
def animate(self, img_source, vid_target, d_l, v_l):
|
| 74 |
alpha_start = self.get_alpha(vid_target[:, 0, :, :, :])
|
|
|
|
| 6 |
from tqdm import tqdm
|
| 7 |
from einops import rearrange, repeat
|
| 8 |
import time
|
| 9 |
+
from contextlib import contextmanager
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
@contextmanager
|
| 13 |
+
def timing_context(label, enabled=True):
|
| 14 |
+
"""Context manager for timing that doesn't break torch.compile"""
|
| 15 |
+
if not enabled:
|
| 16 |
+
yield
|
| 17 |
+
return
|
| 18 |
+
start = time.time()
|
| 19 |
+
yield
|
| 20 |
+
end = time.time()
|
| 21 |
+
print(f"[Generator.edit_img] {label} took: {(end - start) * 1000:.2f} ms")
|
| 22 |
|
| 23 |
|
| 24 |
class Generator(nn.Module):
|
|
|
|
| 45 |
return self.enc.enc_motion(x)
|
| 46 |
|
| 47 |
def edit_img(self, img_source, d_l, v_l):
|
| 48 |
+
return self._edit_img_core(img_source, d_l, v_l)
|
| 49 |
+
|
| 50 |
+
def edit_img_with_timing(self, img_source, d_l, v_l):
|
| 51 |
+
"""Version with timing for debugging - not compiled"""
|
| 52 |
start_time = time.time()
|
| 53 |
print(f"[Generator.edit_img] Starting image editing...")
|
| 54 |
|
| 55 |
+
with timing_context("enc_2r encoding"):
|
| 56 |
+
z_s2r, feat_rgb = self.enc.enc_2r(img_source)
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
+
with timing_context("enc_r2t encoding"):
|
| 59 |
+
alpha_r2s = self.enc.enc_r2t(z_s2r)
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
+
with timing_context("Alpha modification"):
|
| 62 |
+
# Create tensor directly on the same device as alpha_r2s
|
| 63 |
+
v_l_tensor = torch.tensor(v_l, device=alpha_r2s.device, dtype=alpha_r2s.dtype).unsqueeze(0)
|
| 64 |
+
alpha_r2s[:, d_l] = alpha_r2s[:, d_l] + v_l_tensor
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
+
with timing_context("Decoding"):
|
| 67 |
+
img_recon = self.dec(z_s2r, [alpha_r2s], feat_rgb)
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
# Total time
|
| 70 |
end_time = time.time()
|
|
|
|
| 73 |
print(f"[Generator.edit_img] ----------------------------------------")
|
| 74 |
|
| 75 |
return img_recon
|
| 76 |
+
|
| 77 |
+
def _edit_img_core(self, img_source, d_l, v_l):
|
| 78 |
+
"""Core edit_img logic without timing - can be compiled"""
|
| 79 |
+
z_s2r, feat_rgb = self.enc.enc_2r(img_source)
|
| 80 |
+
alpha_r2s = self.enc.enc_r2t(z_s2r)
|
| 81 |
+
|
| 82 |
+
# Create tensor directly on the same device as alpha_r2s
|
| 83 |
+
v_l_tensor = torch.tensor(v_l, device=alpha_r2s.device, dtype=alpha_r2s.dtype).unsqueeze(0)
|
| 84 |
+
alpha_r2s[:, d_l] = alpha_r2s[:, d_l] + v_l_tensor
|
| 85 |
+
|
| 86 |
+
img_recon = self.dec(z_s2r, [alpha_r2s], feat_rgb)
|
| 87 |
+
return img_recon
|
| 88 |
|
| 89 |
def animate(self, img_source, vid_target, d_l, v_l):
|
| 90 |
alpha_start = self.get_alpha(vid_target[:, 0, :, :, :])
|
networks/op/fused_act.py
CHANGED
|
@@ -110,6 +110,7 @@ class FusedLeakyReLU(nn.Module):
|
|
| 110 |
return fused_leaky_relu(input, self.bias, self.negative_slope, self.scale)
|
| 111 |
|
| 112 |
|
|
|
|
| 113 |
def fused_leaky_relu(input, bias=None, negative_slope=0.2, scale=2 ** 0.5):
|
| 114 |
if input.device.type == "cpu":
|
| 115 |
if bias is not None:
|
|
|
|
| 110 |
return fused_leaky_relu(input, self.bias, self.negative_slope, self.scale)
|
| 111 |
|
| 112 |
|
| 113 |
+
@torch.compiler.allow_in_graph
|
| 114 |
def fused_leaky_relu(input, bias=None, negative_slope=0.2, scale=2 ** 0.5):
|
| 115 |
if input.device.type == "cpu":
|
| 116 |
if bias is not None:
|
networks/op/upfirdn2d.py
CHANGED
|
@@ -149,6 +149,7 @@ class UpFirDn2d(Function):
|
|
| 149 |
return grad_input, None, None, None, None
|
| 150 |
|
| 151 |
|
|
|
|
| 152 |
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
|
| 153 |
if not isinstance(up, abc.Iterable):
|
| 154 |
up = (up, up)
|
|
|
|
| 149 |
return grad_input, None, None, None, None
|
| 150 |
|
| 151 |
|
| 152 |
+
@torch.compiler.allow_in_graph
|
| 153 |
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
|
| 154 |
if not isinstance(up, abc.Iterable):
|
| 155 |
up = (up, up)
|