Spaces:
Paused
Paused
Update networks/generator.py
Browse files- networks/generator.py +31 -21
networks/generator.py
CHANGED
|
@@ -17,6 +17,16 @@ class Generator(nn.Module):
|
|
| 17 |
# encoder
|
| 18 |
self.enc = Encoder(style_dim, motion_dim, scale)
|
| 19 |
self.dec = Decoder(style_dim, motion_dim, scale)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
def get_alpha(self, x):
|
| 22 |
return self.enc.enc_motion(x)
|
|
@@ -38,16 +48,11 @@ class Generator(nn.Module):
|
|
| 38 |
enc_r2t_end = time.time()
|
| 39 |
print(f"[Generator.edit_img] enc_r2t encoding took: {(enc_r2t_end - enc_r2t_start) * 1000:.2f} ms")
|
| 40 |
|
| 41 |
-
# Alpha modification timing
|
| 42 |
alpha_mod_start = time.time()
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
#alpha_r2s[:, d_l] = alpha_r2s[:, d_l] + torch.FloatTensor(v_l).unsqueeze(0).to('cuda')
|
| 47 |
-
|
| 48 |
-
# Optimized (create directly on GPU)
|
| 49 |
-
alpha_r2s[:, d_l] = alpha_r2s[:, d_l] + torch.tensor(v_l, device='cuda', dtype=torch.float32).unsqueeze(0)
|
| 50 |
-
|
| 51 |
alpha_mod_end = time.time()
|
| 52 |
print(f"[Generator.edit_img] Alpha modification took: {(alpha_mod_end - alpha_mod_start) * 1000:.2f} ms")
|
| 53 |
|
|
@@ -66,13 +71,15 @@ class Generator(nn.Module):
|
|
| 66 |
return img_recon
|
| 67 |
|
| 68 |
def animate(self, img_source, vid_target, d_l, v_l):
|
| 69 |
-
|
| 70 |
alpha_start = self.get_alpha(vid_target[:, 0, :, :, :])
|
| 71 |
|
| 72 |
vid_target_recon = []
|
| 73 |
z_s2r, feat_rgb = self.enc.enc_2r(img_source)
|
| 74 |
alpha_r2s = self.enc.enc_r2t(z_s2r)
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
for i in tqdm(range(vid_target.size(1))):
|
| 78 |
img_target = vid_target[:, i, :, :, :]
|
|
@@ -84,14 +91,16 @@ class Generator(nn.Module):
|
|
| 84 |
return vid_target_recon
|
| 85 |
|
| 86 |
def animate_batch(self, img_source, vid_target, d_l, v_l, chunk_size):
|
| 87 |
-
|
| 88 |
b,t,c,h,w = vid_target.size()
|
| 89 |
alpha_start = self.get_alpha(vid_target[:, 0, :, :, :]) # 1x40
|
| 90 |
|
| 91 |
vid_target_recon = []
|
| 92 |
z_s2r, feat_rgb = self.enc.enc_2r(img_source)
|
| 93 |
alpha_r2s = self.enc.enc_r2t(z_s2r)
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
bs = chunk_size
|
| 97 |
chunks = t//bs
|
|
@@ -121,14 +130,16 @@ class Generator(nn.Module):
|
|
| 121 |
return vid_target_recon # BCTHW
|
| 122 |
|
| 123 |
def edit_vid(self, vid_target, d_l, v_l):
|
| 124 |
-
|
| 125 |
img_source = vid_target[:, 0, :, :, :]
|
| 126 |
alpha_start = self.get_alpha(vid_target[:, 0, :, :, :])
|
| 127 |
|
| 128 |
vid_target_recon = []
|
| 129 |
z_s2r, feat_rgb = self.enc.enc_2r(img_source)
|
| 130 |
alpha_r2s = self.enc.enc_r2t(z_s2r)
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
for i in tqdm(range(vid_target.size(1))):
|
| 134 |
img_target = vid_target[:, i, :, :, :]
|
|
@@ -140,7 +151,6 @@ class Generator(nn.Module):
|
|
| 140 |
return vid_target_recon
|
| 141 |
|
| 142 |
def edit_vid_batch(self, vid_target, d_l, v_l, chunk_size):
|
| 143 |
-
|
| 144 |
b,t,c,h,w = vid_target.size()
|
| 145 |
img_source = vid_target[:, 0, :, :, :]
|
| 146 |
alpha_start = self.get_alpha(img_source) # 1x40
|
|
@@ -148,7 +158,10 @@ class Generator(nn.Module):
|
|
| 148 |
vid_target_recon = []
|
| 149 |
z_s2r, feat_rgb = self.enc.enc_2r(img_source)
|
| 150 |
alpha_r2s = self.enc.enc_r2t(z_s2r)
|
| 151 |
-
|
|
|
|
|
|
|
|
|
|
| 152 |
|
| 153 |
bs = chunk_size
|
| 154 |
chunks = t//bs
|
|
@@ -177,9 +190,7 @@ class Generator(nn.Module):
|
|
| 177 |
|
| 178 |
return vid_target_recon # BCTHW
|
| 179 |
|
| 180 |
-
|
| 181 |
def interpolate_img(self, img_source, d_l, v_l):
|
| 182 |
-
|
| 183 |
vid_target_recon = []
|
| 184 |
|
| 185 |
step = 16
|
|
@@ -229,5 +240,4 @@ class Generator(nn.Module):
|
|
| 229 |
|
| 230 |
vid_target_recon = torch.cat(vid_target_recon, dim=2) # BCTHW
|
| 231 |
|
| 232 |
-
return vid_target_recon
|
| 233 |
-
|
|
|
|
| 17 |
# encoder
|
| 18 |
self.enc = Encoder(style_dim, motion_dim, scale)
|
| 19 |
self.dec = Decoder(style_dim, motion_dim, scale)
|
| 20 |
+
|
| 21 |
+
# Pre-allocate commonly used tensors to avoid repeated allocations
|
| 22 |
+
self._device = None
|
| 23 |
+
self._cached_tensors = {}
|
| 24 |
+
|
| 25 |
+
@property
|
| 26 |
+
def device(self):
|
| 27 |
+
if self._device is None:
|
| 28 |
+
self._device = next(self.parameters()).device
|
| 29 |
+
return self._device
|
| 30 |
|
| 31 |
def get_alpha(self, x):
|
| 32 |
return self.enc.enc_motion(x)
|
|
|
|
| 48 |
enc_r2t_end = time.time()
|
| 49 |
print(f"[Generator.edit_img] enc_r2t encoding took: {(enc_r2t_end - enc_r2t_start) * 1000:.2f} ms")
|
| 50 |
|
| 51 |
+
# Alpha modification timing - OPTIMIZED
|
| 52 |
alpha_mod_start = time.time()
|
| 53 |
+
# Create tensor directly on the same device as alpha_r2s
|
| 54 |
+
v_l_tensor = torch.tensor(v_l, device=alpha_r2s.device, dtype=alpha_r2s.dtype).unsqueeze(0)
|
| 55 |
+
alpha_r2s[:, d_l] = alpha_r2s[:, d_l] + v_l_tensor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
alpha_mod_end = time.time()
|
| 57 |
print(f"[Generator.edit_img] Alpha modification took: {(alpha_mod_end - alpha_mod_start) * 1000:.2f} ms")
|
| 58 |
|
|
|
|
| 71 |
return img_recon
|
| 72 |
|
| 73 |
def animate(self, img_source, vid_target, d_l, v_l):
|
|
|
|
| 74 |
alpha_start = self.get_alpha(vid_target[:, 0, :, :, :])
|
| 75 |
|
| 76 |
vid_target_recon = []
|
| 77 |
z_s2r, feat_rgb = self.enc.enc_2r(img_source)
|
| 78 |
alpha_r2s = self.enc.enc_r2t(z_s2r)
|
| 79 |
+
|
| 80 |
+
# Optimized alpha modification
|
| 81 |
+
v_l_tensor = torch.tensor(v_l, device=alpha_r2s.device, dtype=alpha_r2s.dtype).unsqueeze(0)
|
| 82 |
+
alpha_r2s[:, d_l] = alpha_r2s[:, d_l] + v_l_tensor
|
| 83 |
|
| 84 |
for i in tqdm(range(vid_target.size(1))):
|
| 85 |
img_target = vid_target[:, i, :, :, :]
|
|
|
|
| 91 |
return vid_target_recon
|
| 92 |
|
| 93 |
def animate_batch(self, img_source, vid_target, d_l, v_l, chunk_size):
|
|
|
|
| 94 |
b,t,c,h,w = vid_target.size()
|
| 95 |
alpha_start = self.get_alpha(vid_target[:, 0, :, :, :]) # 1x40
|
| 96 |
|
| 97 |
vid_target_recon = []
|
| 98 |
z_s2r, feat_rgb = self.enc.enc_2r(img_source)
|
| 99 |
alpha_r2s = self.enc.enc_r2t(z_s2r)
|
| 100 |
+
|
| 101 |
+
# Optimized alpha modification
|
| 102 |
+
v_l_tensor = torch.tensor(v_l, device=alpha_r2s.device, dtype=alpha_r2s.dtype).unsqueeze(0)
|
| 103 |
+
alpha_r2s[:, d_l] = alpha_r2s[:, d_l] + v_l_tensor
|
| 104 |
|
| 105 |
bs = chunk_size
|
| 106 |
chunks = t//bs
|
|
|
|
| 130 |
return vid_target_recon # BCTHW
|
| 131 |
|
| 132 |
def edit_vid(self, vid_target, d_l, v_l):
|
|
|
|
| 133 |
img_source = vid_target[:, 0, :, :, :]
|
| 134 |
alpha_start = self.get_alpha(vid_target[:, 0, :, :, :])
|
| 135 |
|
| 136 |
vid_target_recon = []
|
| 137 |
z_s2r, feat_rgb = self.enc.enc_2r(img_source)
|
| 138 |
alpha_r2s = self.enc.enc_r2t(z_s2r)
|
| 139 |
+
|
| 140 |
+
# Optimized alpha modification
|
| 141 |
+
v_l_tensor = torch.tensor(v_l, device=alpha_r2s.device, dtype=alpha_r2s.dtype).unsqueeze(0)
|
| 142 |
+
alpha_r2s[:, d_l] = alpha_r2s[:, d_l] + v_l_tensor
|
| 143 |
|
| 144 |
for i in tqdm(range(vid_target.size(1))):
|
| 145 |
img_target = vid_target[:, i, :, :, :]
|
|
|
|
| 151 |
return vid_target_recon
|
| 152 |
|
| 153 |
def edit_vid_batch(self, vid_target, d_l, v_l, chunk_size):
|
|
|
|
| 154 |
b,t,c,h,w = vid_target.size()
|
| 155 |
img_source = vid_target[:, 0, :, :, :]
|
| 156 |
alpha_start = self.get_alpha(img_source) # 1x40
|
|
|
|
| 158 |
vid_target_recon = []
|
| 159 |
z_s2r, feat_rgb = self.enc.enc_2r(img_source)
|
| 160 |
alpha_r2s = self.enc.enc_r2t(z_s2r)
|
| 161 |
+
|
| 162 |
+
# Optimized alpha modification
|
| 163 |
+
v_l_tensor = torch.tensor(v_l, device=alpha_r2s.device, dtype=alpha_r2s.dtype).unsqueeze(0)
|
| 164 |
+
alpha_r2s[:, d_l] = alpha_r2s[:, d_l] + v_l_tensor
|
| 165 |
|
| 166 |
bs = chunk_size
|
| 167 |
chunks = t//bs
|
|
|
|
| 190 |
|
| 191 |
return vid_target_recon # BCTHW
|
| 192 |
|
|
|
|
| 193 |
def interpolate_img(self, img_source, d_l, v_l):
|
|
|
|
| 194 |
vid_target_recon = []
|
| 195 |
|
| 196 |
step = 16
|
|
|
|
| 240 |
|
| 241 |
vid_target_recon = torch.cat(vid_target_recon, dim=2) # BCTHW
|
| 242 |
|
| 243 |
+
return vid_target_recon
|
|
|