Spaces:
Running
on
T4
Running
on
T4
deepbeepmeep
commited on
Should fix Vace extend
Browse files- wan/text2video.py +2 -2
wan/text2video.py
CHANGED
@@ -477,7 +477,7 @@ class WanT2V:
|
|
477 |
pass
|
478 |
overlap_noise_factor = overlap_noise / 1000
|
479 |
latents[:, conditioning_latents_size + ref_images_count:] = latents[:, conditioning_latents_size + ref_images_count:] * (1.0 - overlap_noise_factor) + torch.randn_like(latents[:, conditioning_latents_size + ref_images_count:]) * overlap_noise_factor
|
480 |
-
timestep = [torch.tensor([t.item()] * (conditioning_latents_size + ref_images_count) + [t.item() - overlap_noise]*(len(timesteps) - conditioning_latents_size - ref_images_count))]
|
481 |
|
482 |
if target_camera != None:
|
483 |
latent_model_input = torch.cat([latents, source_latents], dim=1)
|
@@ -598,4 +598,4 @@ class WanT2V:
|
|
598 |
setattr(target, "vace", module )
|
599 |
delattr(model, "vace_blocks")
|
600 |
|
601 |
-
|
|
|
477 |
pass
|
478 |
overlap_noise_factor = overlap_noise / 1000
|
479 |
latents[:, conditioning_latents_size + ref_images_count:] = latents[:, conditioning_latents_size + ref_images_count:] * (1.0 - overlap_noise_factor) + torch.randn_like(latents[:, conditioning_latents_size + ref_images_count:]) * overlap_noise_factor
|
480 |
+
#timestep = [torch.tensor([t.item()] * (conditioning_latents_size + ref_images_count) + [t.item() - overlap_noise]*(len(timesteps) - conditioning_latents_size - ref_images_count))]
|
481 |
|
482 |
if target_camera != None:
|
483 |
latent_model_input = torch.cat([latents, source_latents], dim=1)
|
|
|
598 |
setattr(target, "vace", module )
|
599 |
delattr(model, "vace_blocks")
|
600 |
|
601 |
+
|