Commit
路
3ed2ed6
1
Parent(s):
b105b21
Update base/app.py
Browse files- base/app.py +17 -60
base/app.py
CHANGED
|
@@ -16,21 +16,12 @@ from diffusers.schedulers import DDIMScheduler, DDPMScheduler, PNDMScheduler, Eu
|
|
| 16 |
from diffusers.models import AutoencoderKL
|
| 17 |
from transformers import CLIPTokenizer, CLIPTextModel, CLIPTextModelWithProjection
|
| 18 |
|
|
|
|
| 19 |
|
| 20 |
config_path = "./base/configs/sample.yaml"
|
| 21 |
args = OmegaConf.load("./base/configs/sample.yaml")
|
| 22 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 23 |
|
| 24 |
-
css = """
|
| 25 |
-
h1 {
|
| 26 |
-
text-align: center;
|
| 27 |
-
}
|
| 28 |
-
#component-0 {
|
| 29 |
-
max-width: 730px;
|
| 30 |
-
margin: auto;
|
| 31 |
-
}
|
| 32 |
-
"""
|
| 33 |
-
|
| 34 |
sd_path = args.pretrained_path
|
| 35 |
unet = get_models(args, sd_path).to(device, dtype=torch.float16)
|
| 36 |
state_dict = find_model("./pretrained_models/lavie_base.pt")
|
|
@@ -42,7 +33,10 @@ unet.eval()
|
|
| 42 |
vae.eval()
|
| 43 |
text_encoder_one.eval()
|
| 44 |
|
| 45 |
-
def infer(prompt, seed_inp, ddim_steps,cfg, infer_type):
|
|
|
|
|
|
|
|
|
|
| 46 |
if seed_inp!=-1:
|
| 47 |
setup_seed(seed_inp)
|
| 48 |
else:
|
|
@@ -79,38 +73,21 @@ def infer(prompt, seed_inp, ddim_steps,cfg, infer_type):
|
|
| 79 |
return args.output_folder + prompt[0:30].replace(' ', '_') + '-'+str(seed_inp)+'-'+str(ddim_steps)+'-'+str(cfg)+ '-.mp4'
|
| 80 |
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
"
|
| 91 |
-
|
| 92 |
-
<h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;">
|
| 93 |
-
Intern路Vchitect (Text-to-Video)
|
| 94 |
-
</h1>
|
| 95 |
-
</div>
|
| 96 |
-
<p style="margin-bottom: 10px; font-size: 94%">
|
| 97 |
-
Apply Intern路Vchitect to generate a video
|
| 98 |
-
</p>
|
| 99 |
-
</div>
|
| 100 |
-
"""
|
| 101 |
-
|
| 102 |
-
with gr.Blocks(css='style.css') as demo:
|
| 103 |
-
gr.Markdown("<font color=red size=10><center>LaVie: Text-to-Video generation</center></font>")
|
| 104 |
-
gr.Markdown(
|
| 105 |
-
"""<div style="text-align:center">
|
| 106 |
-
[<a href="https://arxiv.org/abs/2309.15103">Arxiv Report</a>] | [<a href="https://vchitect.github.io/LaVie-project/">Project Page</a>] | [<a href="https://github.com/Vchitect/LaVie">Github</a>]</div>
|
| 107 |
-
"""
|
| 108 |
-
)
|
| 109 |
with gr.Column():
|
| 110 |
with gr.Row(elem_id="col-container"):
|
| 111 |
with gr.Column():
|
| 112 |
|
| 113 |
-
prompt = gr.Textbox(value="
|
| 114 |
infer_type = gr.Dropdown(['ddpm','ddim','eulerdiscrete'], label='infer_type',value='ddim')
|
| 115 |
ddim_steps = gr.Slider(label='Steps', minimum=50, maximum=300, value=50, step=1)
|
| 116 |
seed_inp = gr.Slider(value=-1,label="seed (for random generation, use -1)",show_label=True,minimum=-1,maximum=2147483647)
|
|
@@ -120,29 +97,9 @@ with gr.Blocks(css='style.css') as demo:
|
|
| 120 |
submit_btn = gr.Button("Generate video")
|
| 121 |
video_out = gr.Video(label="Video result", elem_id="video-output")
|
| 122 |
|
| 123 |
-
inputs = [prompt, seed_inp, ddim_steps, cfg, infer_type]
|
| 124 |
outputs = [video_out]
|
| 125 |
|
| 126 |
-
ex = gr.Examples(
|
| 127 |
-
examples = [['a corgi walking in the park at sunrise, oil painting style',400,50,7,'ddim'],
|
| 128 |
-
['a cut teddy bear reading a book in the park, oil painting style, high quality',700,50,7,'ddim'],
|
| 129 |
-
['an epic tornado attacking above a glowing city at night, the tornado is made of smoke, highly detailed',230,50,7,'ddim'],
|
| 130 |
-
['a jar filled with fire, 4K video, 3D rendered, well-rendered',400,50,7,'ddim'],
|
| 131 |
-
['a teddy bear walking in the park, oil painting style, high quality',400,50,7,'ddim'],
|
| 132 |
-
['a teddy bear walking on the street, 2k, high quality',100,50,7,'ddim'],
|
| 133 |
-
['a panda taking a selfie, 2k, high quality',400,50,7,'ddim'],
|
| 134 |
-
['a polar bear playing drum kit in NYC Times Square, 4k, high resolution',400,50,7,'ddim'],
|
| 135 |
-
['jungle river at sunset, ultra quality',400,50,7,'ddim'],
|
| 136 |
-
['a shark swimming in clear Carribean ocean, 2k, high quality',400,50,7,'ddim'],
|
| 137 |
-
['A steam train moving on a mountainside by Vincent van Gogh',230,50,7,'ddim'],
|
| 138 |
-
['a confused grizzly bear in calculus class',1000,50,7,'ddim']],
|
| 139 |
-
fn = infer,
|
| 140 |
-
inputs=[prompt, seed_inp, ddim_steps,cfg,infer_type],
|
| 141 |
-
outputs=[video_out],
|
| 142 |
-
cache_examples=False,
|
| 143 |
-
)
|
| 144 |
-
ex.dataset.headers = [""]
|
| 145 |
-
|
| 146 |
submit_btn.click(infer, inputs, outputs)
|
| 147 |
|
| 148 |
demo.queue(max_size=12).launch()
|
|
|
|
| 16 |
from diffusers.models import AutoencoderKL
|
| 17 |
from transformers import CLIPTokenizer, CLIPTextModel, CLIPTextModelWithProjection
|
| 18 |
|
| 19 |
+
SECRET_TOKEN = os.getenv('SECRET_TOKEN', 'default_secret')
|
| 20 |
|
| 21 |
config_path = "./base/configs/sample.yaml"
|
| 22 |
args = OmegaConf.load("./base/configs/sample.yaml")
|
| 23 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
sd_path = args.pretrained_path
|
| 26 |
unet = get_models(args, sd_path).to(device, dtype=torch.float16)
|
| 27 |
state_dict = find_model("./pretrained_models/lavie_base.pt")
|
|
|
|
| 33 |
vae.eval()
|
| 34 |
text_encoder_one.eval()
|
| 35 |
|
| 36 |
+
def infer(secret_token, prompt, seed_inp, ddim_steps,cfg, infer_type):
|
| 37 |
+
if secret_token != SECRET_TOKEN:
|
| 38 |
+
raise gr.Error(f'Invalid secret token. Please fork the original space if you want to use it for yourself.')
|
| 39 |
+
|
| 40 |
if seed_inp!=-1:
|
| 41 |
setup_seed(seed_inp)
|
| 42 |
else:
|
|
|
|
| 73 |
return args.output_folder + prompt[0:30].replace(' ', '_') + '-'+str(seed_inp)+'-'+str(ddim_steps)+'-'+str(cfg)+ '-.mp4'
|
| 74 |
|
| 75 |
|
| 76 |
+
|
| 77 |
+
with gr.Blocks() as demo:
|
| 78 |
+
gr.HTML("""
|
| 79 |
+
<div style="z-index: 100; position: fixed; top: 0px; right: 0px; left: 0px; bottom: 0px; width: 100%; height: 100%; background: white; display: flex; align-items: center; justify-content: center; color: black;">
|
| 80 |
+
<div style="text-align: center; color: black;">
|
| 81 |
+
<p style="color: black;">This space is a REST API to programmatically generate MP4 videos.</p>
|
| 82 |
+
<p style="color: black;">Interested in using it? Look no further than the <a href="https://huggingface.co/spaces/Vchitect/LaVie" target="_blank">original space</a>!</p>
|
| 83 |
+
</div>
|
| 84 |
+
</div>""")
|
| 85 |
+
secret_token = gr.Textbox(label="Secret token")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
with gr.Column():
|
| 87 |
with gr.Row(elem_id="col-container"):
|
| 88 |
with gr.Column():
|
| 89 |
|
| 90 |
+
prompt = gr.Textbox(value="", label="Prompt", placeholder="enter prompt", show_label=True, elem_id="prompt-in", min_width=200, lines=2)
|
| 91 |
infer_type = gr.Dropdown(['ddpm','ddim','eulerdiscrete'], label='infer_type',value='ddim')
|
| 92 |
ddim_steps = gr.Slider(label='Steps', minimum=50, maximum=300, value=50, step=1)
|
| 93 |
seed_inp = gr.Slider(value=-1,label="seed (for random generation, use -1)",show_label=True,minimum=-1,maximum=2147483647)
|
|
|
|
| 97 |
submit_btn = gr.Button("Generate video")
|
| 98 |
video_out = gr.Video(label="Video result", elem_id="video-output")
|
| 99 |
|
| 100 |
+
inputs = [secret_token, prompt, seed_inp, ddim_steps, cfg, infer_type]
|
| 101 |
outputs = [video_out]
|
| 102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
submit_btn.click(infer, inputs, outputs)
|
| 104 |
|
| 105 |
demo.queue(max_size=12).launch()
|