--- title: Gemma AI Assistant emoji: 🤖 colorFrom: indigo colorTo: purple sdk: docker sdk_version: "1.0" app_file: app.py pinned: false --- # Gemma AI Assistant Space This Space hosts the backend API for the Gemma AI Assistant, a conversational AI that combines local LLM processing using HuggingFace Transformers and real-time chat capabilities with Google's Gemini API. ## Features - FastAPI backend with async support - Local LLM using `mradermacher/Huihui-gemma-3n-E4B-it-abliterated-GGUF` - Gemini API integration for real-time chat - Supabase integration for data persistence - Containerized deployment ## API Endpoints ### POST /api/chat Process chat messages using either the local LLM or Gemini API. **Request Body:** ```json { "messages": [ { "role": "user", "content": "Hello, how are you?" } ], "use_gemini": true, "temperature": 0.7 } ``` **Response:** ```json { "response": "I'm doing well, thank you! How can I help you today?" } ``` ## Environment Variables Required - `GOOGLE_AI_STUDIO_KEY`: Your Google AI Studio API key - `SUPABASE_URL`: Your Supabase project URL - `SUPABASE_SERVICE_KEY`: Your Supabase service role key - `HF_MODEL_ID`: HuggingFace model ID (default: mradermacher/Huihui-gemma-3n-E4B-it-abliterated-GGUF) ## Local Development 1. Install dependencies: ```bash pip install -r requirements.txt ``` 2. Run the server: ```bash uvicorn app:app --reload --port 7860 ``` ## Testing Run the tests using pytest: ```bash pytest test_app.py -v ```