import tensorflow_hub as hub import pickle import sklearn embed = hub.load("https://tfhub.dev/google/universal-sentence-encoder/4") with open('./model.pck', 'rb') as f: model = pickle.load(f) import gradio as gr def convert(text): #Se genera el embedding del texto text_embed = embed([text]) #El modelo hace su predicción prediction = model.predict_proba(text_embed).flatten() #Se devuelve el percentaje que el modelo ha predicho para cada etiqueta return {"ham": float(prediction[0]), "spam" : float(prediction[1])} iface = gr.Interface( fn=convert, inputs="text", outputs="label", examples=["I will help you win the lottery, my friend", "Please, darling, could you pick up the kids from school today?"], title="Ham or spam?", description="Copy and paste the text message you just received and we'll let you know if it is ham or spam", ) iface.launch()