Spaces:
Running
Running
jhj0517
commited on
Commit
·
1e64bcc
1
Parent(s):
a0164a7
better read
Browse files- modules/model_Inference.py +72 -66
modules/model_Inference.py
CHANGED
|
@@ -1,48 +1,52 @@
|
|
| 1 |
import whisper
|
| 2 |
-
from modules.subtitle_manager import get_srt,get_vtt,write_srt,write_vtt,safe_filename
|
| 3 |
-
from modules.youtube_manager import get_ytdata,get_ytaudio
|
| 4 |
import gradio as gr
|
| 5 |
import os
|
| 6 |
from datetime import datetime
|
| 7 |
|
| 8 |
-
DEFAULT_MODEL_SIZE="large-v2"
|
| 9 |
|
| 10 |
-
|
|
|
|
| 11 |
def __init__(self):
|
| 12 |
print("\nInitializing Model..\n")
|
| 13 |
self.current_model_size = DEFAULT_MODEL_SIZE
|
| 14 |
-
self.model = whisper.load_model(name=DEFAULT_MODEL_SIZE,download_root="models")
|
| 15 |
self.available_models = whisper.available_models()
|
| 16 |
self.available_langs = sorted(list(whisper.tokenizer.LANGUAGES.values()))
|
| 17 |
|
| 18 |
-
def transcribe_file(self,fileobjs
|
| 19 |
-
,model_size,lang,subformat,istranslate,
|
| 20 |
progress=gr.Progress()):
|
| 21 |
-
|
| 22 |
def progress_callback(progress_value):
|
| 23 |
-
progress(progress_value,desc="Transcribing..")
|
| 24 |
-
|
| 25 |
if model_size != self.current_model_size:
|
| 26 |
-
progress(0,desc="Initializing Model..")
|
| 27 |
self.current_model_size = model_size
|
| 28 |
-
self.model = whisper.load_model(name=model_size,download_root="models")
|
| 29 |
|
| 30 |
-
if lang == "Automatic Detection"
|
| 31 |
-
lang = None
|
| 32 |
|
| 33 |
-
progress(0,desc="Loading Audio..")
|
| 34 |
|
| 35 |
files_info = {}
|
| 36 |
-
for fileobj in fileobjs:
|
|
|
|
| 37 |
audio = whisper.load_audio(fileobj.name)
|
| 38 |
|
| 39 |
-
translatable_model = ["large","large-v1","large-v2"]
|
| 40 |
if istranslate and self.current_model_size in translatable_model:
|
| 41 |
-
result = self.model.transcribe(audio=audio,language=lang,verbose=False,task="translate",
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
| 44 |
|
| 45 |
-
progress(1,desc="Completed!")
|
| 46 |
|
| 47 |
file_name, file_ext = os.path.splitext(os.path.basename(fileobj.orig_name))
|
| 48 |
file_name = file_name[:-9]
|
|
@@ -52,47 +56,49 @@ class WhisperInference():
|
|
| 52 |
|
| 53 |
if subformat == "SRT":
|
| 54 |
subtitle = get_srt(result["segments"])
|
| 55 |
-
write_srt(subtitle,f"{output_path}.srt")
|
| 56 |
elif subformat == "WebVTT":
|
| 57 |
subtitle = get_vtt(result["segments"])
|
| 58 |
-
write_vtt(subtitle,f"{output_path}.vtt")
|
| 59 |
|
| 60 |
files_info[file_name] = subtitle
|
| 61 |
|
| 62 |
total_result = ''
|
| 63 |
-
for file_name,subtitle in files_info.items():
|
| 64 |
-
total_result+='------------------------------------\n'
|
| 65 |
-
total_result+=f'{file_name}\n\n'
|
| 66 |
-
total_result+=f'{subtitle}'
|
| 67 |
|
| 68 |
return f"Done! Subtitle is in the outputs folder.\n\n{total_result}"
|
| 69 |
-
|
| 70 |
-
def transcribe_youtube(self,youtubelink
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
def progress_callback(progress_value):
|
| 75 |
-
progress(progress_value,desc="Transcribing..")
|
| 76 |
|
| 77 |
if model_size != self.current_model_size:
|
| 78 |
-
progress(0,desc="Initializing Model..")
|
| 79 |
self.current_model_size = model_size
|
| 80 |
-
self.model = whisper.load_model(name=model_size,download_root="models")
|
| 81 |
|
| 82 |
-
if lang == "Automatic Detection"
|
| 83 |
-
lang = None
|
| 84 |
|
| 85 |
-
progress(0,desc="Loading Audio from Youtube..")
|
| 86 |
yt = get_ytdata(youtubelink)
|
| 87 |
audio = whisper.load_audio(get_ytaudio(yt))
|
| 88 |
|
| 89 |
-
translatable_model = ["large","large-v1","large-v2"]
|
| 90 |
if istranslate and self.current_model_size in translatable_model:
|
| 91 |
-
result = self.model.transcribe(audio=audio,language=lang,verbose=False,task="translate",
|
| 92 |
-
|
| 93 |
-
|
|
|
|
|
|
|
| 94 |
|
| 95 |
-
progress(1,desc="Completed!")
|
| 96 |
|
| 97 |
file_name = safe_filename(yt.title)
|
| 98 |
timestamp = datetime.now().strftime("%m%d%H%M%S")
|
|
@@ -100,48 +106,48 @@ class WhisperInference():
|
|
| 100 |
|
| 101 |
if subformat == "SRT":
|
| 102 |
subtitle = get_srt(result["segments"])
|
| 103 |
-
write_srt(subtitle,f"{output_path}.srt")
|
| 104 |
elif subformat == "WebVTT":
|
| 105 |
subtitle = get_vtt(result["segments"])
|
| 106 |
-
write_vtt(subtitle,f"{output_path}.vtt")
|
| 107 |
|
| 108 |
return f"Done! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
| 109 |
-
|
| 110 |
-
def transcribe_mic(self,micaudio
|
| 111 |
-
|
| 112 |
-
|
| 113 |
|
| 114 |
def progress_callback(progress_value):
|
| 115 |
-
progress(progress_value,desc="Transcribing..")
|
| 116 |
-
|
| 117 |
if model_size != self.current_model_size:
|
| 118 |
-
progress(0,desc="Initializing Model..")
|
| 119 |
self.current_model_size = model_size
|
| 120 |
-
self.model = whisper.load_model(name=model_size,download_root="models")
|
| 121 |
|
| 122 |
-
if lang == "Automatic Detection"
|
| 123 |
-
lang = None
|
| 124 |
|
| 125 |
-
progress(0,desc="Loading Audio..")
|
| 126 |
|
| 127 |
-
translatable_model = ["large","large-v1","large-v2"]
|
| 128 |
if istranslate and self.current_model_size in translatable_model:
|
| 129 |
-
result = self.model.transcribe(audio=micaudio,language=lang,verbose=False,task="translate",
|
| 130 |
-
|
| 131 |
-
|
|
|
|
|
|
|
| 132 |
|
| 133 |
-
progress(1,desc="Completed!")
|
| 134 |
|
| 135 |
timestamp = datetime.now().strftime("%m%d%H%M%S")
|
| 136 |
output_path = f"outputs/Mic-{timestamp}"
|
| 137 |
|
| 138 |
if subformat == "SRT":
|
| 139 |
subtitle = get_srt(result["segments"])
|
| 140 |
-
write_srt(subtitle,f"{output_path}.srt")
|
| 141 |
elif subformat == "WebVTT":
|
| 142 |
subtitle = get_vtt(result["segments"])
|
| 143 |
-
write_vtt(subtitle,f"{output_path}.vtt")
|
| 144 |
-
|
| 145 |
return f"Done! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
| 146 |
-
|
| 147 |
-
|
|
|
|
| 1 |
import whisper
|
| 2 |
+
from modules.subtitle_manager import get_srt, get_vtt, write_srt, write_vtt, safe_filename
|
| 3 |
+
from modules.youtube_manager import get_ytdata, get_ytaudio
|
| 4 |
import gradio as gr
|
| 5 |
import os
|
| 6 |
from datetime import datetime
|
| 7 |
|
| 8 |
+
DEFAULT_MODEL_SIZE = "large-v2"
|
| 9 |
|
| 10 |
+
|
| 11 |
+
class WhisperInference:
|
| 12 |
def __init__(self):
|
| 13 |
print("\nInitializing Model..\n")
|
| 14 |
self.current_model_size = DEFAULT_MODEL_SIZE
|
| 15 |
+
self.model = whisper.load_model(name=DEFAULT_MODEL_SIZE, download_root="models")
|
| 16 |
self.available_models = whisper.available_models()
|
| 17 |
self.available_langs = sorted(list(whisper.tokenizer.LANGUAGES.values()))
|
| 18 |
|
| 19 |
+
def transcribe_file(self, fileobjs
|
| 20 |
+
, model_size, lang, subformat, istranslate,
|
| 21 |
progress=gr.Progress()):
|
| 22 |
+
|
| 23 |
def progress_callback(progress_value):
|
| 24 |
+
progress(progress_value, desc="Transcribing..")
|
| 25 |
+
|
| 26 |
if model_size != self.current_model_size:
|
| 27 |
+
progress(0, desc="Initializing Model..")
|
| 28 |
self.current_model_size = model_size
|
| 29 |
+
self.model = whisper.load_model(name=model_size, download_root="models")
|
| 30 |
|
| 31 |
+
if lang == "Automatic Detection":
|
| 32 |
+
lang = None
|
| 33 |
|
| 34 |
+
progress(0, desc="Loading Audio..")
|
| 35 |
|
| 36 |
files_info = {}
|
| 37 |
+
for fileobj in fileobjs:
|
| 38 |
+
|
| 39 |
audio = whisper.load_audio(fileobj.name)
|
| 40 |
|
| 41 |
+
translatable_model = ["large", "large-v1", "large-v2"]
|
| 42 |
if istranslate and self.current_model_size in translatable_model:
|
| 43 |
+
result = self.model.transcribe(audio=audio, language=lang, verbose=False, task="translate",
|
| 44 |
+
progress_callback=progress_callback)
|
| 45 |
+
else:
|
| 46 |
+
result = self.model.transcribe(audio=audio, language=lang, verbose=False,
|
| 47 |
+
progress_callback=progress_callback)
|
| 48 |
|
| 49 |
+
progress(1, desc="Completed!")
|
| 50 |
|
| 51 |
file_name, file_ext = os.path.splitext(os.path.basename(fileobj.orig_name))
|
| 52 |
file_name = file_name[:-9]
|
|
|
|
| 56 |
|
| 57 |
if subformat == "SRT":
|
| 58 |
subtitle = get_srt(result["segments"])
|
| 59 |
+
write_srt(subtitle, f"{output_path}.srt")
|
| 60 |
elif subformat == "WebVTT":
|
| 61 |
subtitle = get_vtt(result["segments"])
|
| 62 |
+
write_vtt(subtitle, f"{output_path}.vtt")
|
| 63 |
|
| 64 |
files_info[file_name] = subtitle
|
| 65 |
|
| 66 |
total_result = ''
|
| 67 |
+
for file_name, subtitle in files_info.items():
|
| 68 |
+
total_result += '------------------------------------\n'
|
| 69 |
+
total_result += f'{file_name}\n\n'
|
| 70 |
+
total_result += f'{subtitle}'
|
| 71 |
|
| 72 |
return f"Done! Subtitle is in the outputs folder.\n\n{total_result}"
|
| 73 |
+
|
| 74 |
+
def transcribe_youtube(self, youtubelink
|
| 75 |
+
, model_size, lang, subformat, istranslate,
|
| 76 |
+
progress=gr.Progress()):
|
| 77 |
+
|
| 78 |
def progress_callback(progress_value):
|
| 79 |
+
progress(progress_value, desc="Transcribing..")
|
| 80 |
|
| 81 |
if model_size != self.current_model_size:
|
| 82 |
+
progress(0, desc="Initializing Model..")
|
| 83 |
self.current_model_size = model_size
|
| 84 |
+
self.model = whisper.load_model(name=model_size, download_root="models")
|
| 85 |
|
| 86 |
+
if lang == "Automatic Detection":
|
| 87 |
+
lang = None
|
| 88 |
|
| 89 |
+
progress(0, desc="Loading Audio from Youtube..")
|
| 90 |
yt = get_ytdata(youtubelink)
|
| 91 |
audio = whisper.load_audio(get_ytaudio(yt))
|
| 92 |
|
| 93 |
+
translatable_model = ["large", "large-v1", "large-v2"]
|
| 94 |
if istranslate and self.current_model_size in translatable_model:
|
| 95 |
+
result = self.model.transcribe(audio=audio, language=lang, verbose=False, task="translate",
|
| 96 |
+
progress_callback=progress_callback)
|
| 97 |
+
else:
|
| 98 |
+
result = self.model.transcribe(audio=audio, language=lang, verbose=False,
|
| 99 |
+
progress_callback=progress_callback)
|
| 100 |
|
| 101 |
+
progress(1, desc="Completed!")
|
| 102 |
|
| 103 |
file_name = safe_filename(yt.title)
|
| 104 |
timestamp = datetime.now().strftime("%m%d%H%M%S")
|
|
|
|
| 106 |
|
| 107 |
if subformat == "SRT":
|
| 108 |
subtitle = get_srt(result["segments"])
|
| 109 |
+
write_srt(subtitle, f"{output_path}.srt")
|
| 110 |
elif subformat == "WebVTT":
|
| 111 |
subtitle = get_vtt(result["segments"])
|
| 112 |
+
write_vtt(subtitle, f"{output_path}.vtt")
|
| 113 |
|
| 114 |
return f"Done! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
| 115 |
+
|
| 116 |
+
def transcribe_mic(self, micaudio
|
| 117 |
+
, model_size, lang, subformat, istranslate,
|
| 118 |
+
progress=gr.Progress()):
|
| 119 |
|
| 120 |
def progress_callback(progress_value):
|
| 121 |
+
progress(progress_value, desc="Transcribing..")
|
| 122 |
+
|
| 123 |
if model_size != self.current_model_size:
|
| 124 |
+
progress(0, desc="Initializing Model..")
|
| 125 |
self.current_model_size = model_size
|
| 126 |
+
self.model = whisper.load_model(name=model_size, download_root="models")
|
| 127 |
|
| 128 |
+
if lang == "Automatic Detection":
|
| 129 |
+
lang = None
|
| 130 |
|
| 131 |
+
progress(0, desc="Loading Audio..")
|
| 132 |
|
| 133 |
+
translatable_model = ["large", "large-v1", "large-v2"]
|
| 134 |
if istranslate and self.current_model_size in translatable_model:
|
| 135 |
+
result = self.model.transcribe(audio=micaudio, language=lang, verbose=False, task="translate",
|
| 136 |
+
progress_callback=progress_callback)
|
| 137 |
+
else:
|
| 138 |
+
result = self.model.transcribe(audio=micaudio, language=lang, verbose=False,
|
| 139 |
+
progress_callback=progress_callback)
|
| 140 |
|
| 141 |
+
progress(1, desc="Completed!")
|
| 142 |
|
| 143 |
timestamp = datetime.now().strftime("%m%d%H%M%S")
|
| 144 |
output_path = f"outputs/Mic-{timestamp}"
|
| 145 |
|
| 146 |
if subformat == "SRT":
|
| 147 |
subtitle = get_srt(result["segments"])
|
| 148 |
+
write_srt(subtitle, f"{output_path}.srt")
|
| 149 |
elif subformat == "WebVTT":
|
| 150 |
subtitle = get_vtt(result["segments"])
|
| 151 |
+
write_vtt(subtitle, f"{output_path}.vtt")
|
| 152 |
+
|
| 153 |
return f"Done! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
|
|
|
|
|