Spaces:
Runtime error
Runtime error
Add application file
Browse files- app.py +66 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 6 |
+
from transformers import pipeline
|
| 7 |
+
|
| 8 |
+
emotion_labels = ['喜び', '悲しみ', '期待', '驚き', '怒り', '信頼', '悲しみ', '嫌悪']
|
| 9 |
+
sentiment_labels = ['ポジティブ', 'ニュートラル', 'ネガティブ']
|
| 10 |
+
|
| 11 |
+
def np_softmax(x):
|
| 12 |
+
x_exp = torch.exp(torch.tensor(x) - torch.max(torch.tensor(x)))
|
| 13 |
+
f_x = x_exp / x_exp.sum()
|
| 14 |
+
return f_x
|
| 15 |
+
|
| 16 |
+
def emotion_classifier(text):
|
| 17 |
+
model.eval()
|
| 18 |
+
tokens = tokenizer(text, truncation=True, return_tensors="pt")
|
| 19 |
+
tokens.to(model.device)
|
| 20 |
+
preds = model(**tokens)
|
| 21 |
+
prob = np_softmax(preds.logits.cpu().detach().numpy()[0])
|
| 22 |
+
out_dict = {n: p.item() for n, p in zip(emotion_labels, prob)}
|
| 23 |
+
return out_dict
|
| 24 |
+
|
| 25 |
+
tokenizer = AutoTokenizer.from_pretrained("cl-tohoku/bert-base-japanese-whole-word-masking")
|
| 26 |
+
model = AutoModelForSequenceClassification.from_pretrained("jingwora/language-emotion-classification-ja", num_labels=8)
|
| 27 |
+
|
| 28 |
+
def sentiment_classifier(text):
|
| 29 |
+
clf = pipeline(model="lxyuan/distilbert-base-multilingual-cased-sentiments-student", return_all_scores=True)
|
| 30 |
+
sentiment = clf(text)
|
| 31 |
+
sentiment = {item['label']: item['score'] for item in sentiment[0]}
|
| 32 |
+
sentiment = {sentiment_labels[i]: sentiment[label] for i, label in enumerate(sentiment)} # 日本語ラベル
|
| 33 |
+
return sentiment
|
| 34 |
+
|
| 35 |
+
examples = [
|
| 36 |
+
["このお店は本当に素晴らしいです!サービスも料理も満足できるものばかりでした。"],
|
| 37 |
+
["料理の味が期待外れでした。改善が必要ですね。"],
|
| 38 |
+
["サービスは普通ですが、特に不満もありません。"],
|
| 39 |
+
["価格と品質のバランスが取れていると思います。"],
|
| 40 |
+
]
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
demo = gr.Blocks(
|
| 44 |
+
theme="freddyaboulton/dracula_revamped",
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
with demo:
|
| 48 |
+
gr.Markdown(
|
| 49 |
+
"""
|
| 50 |
+
# Emotion and Sentiment Classification
|
| 51 |
+
Enter Japanese text and get the emotion probabilities and sentiment probablilities.
|
| 52 |
+
"""
|
| 53 |
+
)
|
| 54 |
+
text = gr.Textbox(lines=2)
|
| 55 |
+
with gr.Row():
|
| 56 |
+
gr.Examples(examples=examples, inputs=text)
|
| 57 |
+
|
| 58 |
+
b1 = gr.Button("Emotion Classification")
|
| 59 |
+
label1 = gr.Label(num_top_classes=8)
|
| 60 |
+
b1.click(emotion_classifier, inputs=text, outputs=label1)
|
| 61 |
+
|
| 62 |
+
b2 = gr.Button("Sentiment Analysis")
|
| 63 |
+
label2 = gr.Label(num_top_classes=3)
|
| 64 |
+
b2.click(sentiment_classifier, inputs=text, outputs=label2)
|
| 65 |
+
|
| 66 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
gradio==3.36.1
|
| 3 |
+
transformers==4.30.2
|
| 4 |
+
torch==2.0.1
|