File size: 12,187 Bytes
a90a5a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import random
import re
import time

import numpy as np
import streamlit as st
import torch

st.set_page_config(page_title="MiniMind", initial_sidebar_state="collapsed")

# 在文件开头的 CSS 样式中修改按钮样式
st.markdown("""
    <style>
        /* 添加操作按钮样式 */
        .stButton button {
            border-radius: 50% !important;  /* 改为圆形 */
            width: 32px !important;         /* 固定宽度 */
            height: 32px !important;        /* 固定高度 */
            padding: 0 !important;          /* 移除内边距 */
            background-color: transparent !important;
            border: 1px solid #ddd !important;
            display: flex !important;
            align-items: center !important;
            justify-content: center !important;
            font-size: 14px !important;
            color: #666 !important;         /* 更柔和的颜色 */
            margin: 5px 10px 5px 0 !important;  /* 调整按钮间距 */
        }
        .stButton button:hover {
            border-color: #999 !important;
            color: #333 !important;
            background-color: #f5f5f5 !important;
        }
        
        /* 重置按钮基础样式 */
        .stButton > button {
            all: unset !important;  /* 重置所有默认样式 */
            box-sizing: border-box !important;
            border-radius: 50% !important;
            width: 18px !important;
            height: 18px !important;
            min-width: 18px !important;
            min-height: 18px !important;
            max-width: 18px !important;
            max-height: 18px !important;
            padding: 0 !important;
            background-color: transparent !important;
            border: 1px solid #ddd !important;
            display: flex !important;
            align-items: center !important;
            justify-content: center !important;
            font-size: 14px !important;
            color: #888 !important;
            cursor: pointer !important;
            transition: all 0.2s ease !important;
            margin: 0 2px !important;  /* 调整这里的 margin 值 */
        }

    </style>
""", unsafe_allow_html=True)

system_prompt = []
device = "cuda" if torch.cuda.is_available() else "cpu"


def process_assistant_content(content):
    if 'R1' not in MODEL_PATHS[selected_model][1]:
        return content

    if '<think>' in content and '</think>' in content:
        content = re.sub(r'(<think>)(.*?)(</think>)',
                         r'<details style="font-style: italic; background: rgba(222, 222, 222, 0.5); padding: 10px; border-radius: 10px;"><summary style="font-weight:bold;">推理内容(展开)</summary>\2</details>',
                         content,
                         flags=re.DOTALL)

    if '<think>' in content and '</think>' not in content:
        content = re.sub(r'<think>(.*?)$',
                         r'<details open style="font-style: italic; background: rgba(222, 222, 222, 0.5); padding: 10px; border-radius: 10px;"><summary style="font-weight:bold;">推理中...</summary>\1</details>',
                         content,
                         flags=re.DOTALL)

    if '<think>' not in content and '</think>' in content:
        content = re.sub(r'(.*?)</think>',
                         r'<details style="font-style: italic; background: rgba(222, 222, 222, 0.5); padding: 10px; border-radius: 10px;"><summary style="font-weight:bold;">推理内容(展开)</summary>\1</details>',
                         content,
                         flags=re.DOTALL)

    return content


@st.cache_resource
def load_model_tokenizer(model_path):
    model = AutoModelForCausalLM.from_pretrained(
        model_path,
        trust_remote_code=True
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_path,
        use_fast=False,
        trust_remote_code=True
    )
    model = model.eval().to(device)
    return model, tokenizer


def clear_chat_messages():
    del st.session_state.messages
    del st.session_state.chat_messages


def init_chat_messages():
    if "messages" in st.session_state:
        for i, message in enumerate(st.session_state.messages):
            if message["role"] == "assistant":
                with st.chat_message("assistant", avatar=image_url):
                    st.markdown(process_assistant_content(message["content"]), unsafe_allow_html=True)
                    # 在消息内容下方添加按钮
                    if st.button("🗑", key=f"delete_{i}"):
                        st.session_state.messages.pop(i)
                        st.session_state.messages.pop(i - 1)
                        st.session_state.chat_messages.pop(i)
                        st.session_state.chat_messages.pop(i - 1)
                        st.rerun()
            else:
                st.markdown(
                    f'<div style="display: flex; justify-content: flex-end;"><div style="display: inline-block; margin: 10px 0; padding: 8px 12px 8px 12px;  background-color: #ddd; border-radius: 10px; color: black;">{message["content"]}</div></div>',
                    unsafe_allow_html=True)

    else:
        st.session_state.messages = []
        st.session_state.chat_messages = []

    return st.session_state.messages


# 添加这两个辅助函数
def regenerate_answer(index):
    st.session_state.messages.pop()
    st.session_state.chat_messages.pop()
    st.rerun()


def delete_conversation(index):
    st.session_state.messages.pop(index)
    st.session_state.messages.pop(index - 1)
    st.session_state.chat_messages.pop(index)
    st.session_state.chat_messages.pop(index - 1)
    st.rerun()


# 侧边栏模型选择
st.sidebar.title("模型设定调整")

st.sidebar.text("【注】训练数据偏差,增加上下文记忆时\n多轮对话(较单轮)容易出现能力衰减")
st.session_state.history_chat_num = st.sidebar.slider("Number of Historical Dialogues", 0, 6, 0, step=2)
# st.session_state.history_chat_num = 0
st.session_state.max_new_tokens = st.sidebar.slider("Max Sequence Length", 256, 8192, 8192, step=1)
st.session_state.top_p = st.sidebar.slider("Top-P", 0.8, 0.99, 0.85, step=0.01)
st.session_state.temperature = st.sidebar.slider("Temperature", 0.6, 1.2, 0.85, step=0.01)

# 模型路径映射
MODEL_PATHS = {
    "MiniMind2-R1 (0.1B)": ["./MiniMind2-R1", "MiniMind2-R1"],
    "MiniMind2 (0.1B)": ["./MiniMind2", "MiniMind2"],
}

selected_model = st.sidebar.selectbox('Models', list(MODEL_PATHS.keys()), index=0)  # 默认选择 MiniMind2
model_path = MODEL_PATHS[selected_model][0]

slogan = f"Hi, I'm {MODEL_PATHS[selected_model][1]}"

image_url = "https://www.modelscope.cn/api/v1/studio/gongjy/MiniMind/repo?Revision=master&FilePath=images%2Flogo2.png&View=true"

st.markdown(
    f'<div style="display: flex; flex-direction: column; align-items: center; text-align: center; margin: 0; padding: 0;">'
    '<div style="font-style: italic; font-weight: 900; margin: 0; padding-top: 4px; display: flex; align-items: center; justify-content: center; flex-wrap: wrap; width: 100%;">'
    f'<img src="{image_url}" style="width: 45px; height: 45px; "> '
    f'<span style="font-size: 26px; margin-left: 10px;">{slogan}</span>'
    '</div>'
    '<span style="color: #bbb; font-style: italic; margin-top: 6px; margin-bottom: 10px;">内容完全由AI生成,请务必仔细甄别<br>Content AI-generated, please discern with care</span>'
    '</div>',
    unsafe_allow_html=True
)


def setup_seed(seed):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False


def main():
    model, tokenizer = load_model_tokenizer(model_path)

    # 初始化消息列表
    if "messages" not in st.session_state:
        st.session_state.messages = []
        st.session_state.chat_messages = []

    # Use session state messages
    messages = st.session_state.messages

    # 在显示历史消息的循环中
    for i, message in enumerate(messages):
        if message["role"] == "assistant":
            with st.chat_message("assistant", avatar=image_url):
                st.markdown(process_assistant_content(message["content"]), unsafe_allow_html=True)
                if st.button("×", key=f"delete_{i}"):
                    # 删除当前消息及其之后的所有消息
                    st.session_state.messages = st.session_state.messages[:i - 1]
                    st.session_state.chat_messages = st.session_state.chat_messages[:i - 1]
                    st.rerun()
        else:
            st.markdown(
                f'<div style="display: flex; justify-content: flex-end;"><div style="display: inline-block; margin: 10px 0; padding: 8px 12px 8px 12px;  background-color: gray; border-radius: 10px; color:white; ">{message["content"]}</div></div>',
                unsafe_allow_html=True)

    # 处理新的输入或重新生成
    prompt = st.chat_input(key="input", placeholder="给 MiniMind 发送消息")

    # 检查是否需要重新生成
    if hasattr(st.session_state, 'regenerate') and st.session_state.regenerate:
        prompt = st.session_state.last_user_message
        regenerate_index = st.session_state.regenerate_index  # 获取重新生成的位置
        # 清除所有重新生成相关的状态
        delattr(st.session_state, 'regenerate')
        delattr(st.session_state, 'last_user_message')
        delattr(st.session_state, 'regenerate_index')

    if prompt:
        st.markdown(
            f'<div style="display: flex; justify-content: flex-end;"><div style="display: inline-block; margin: 10px 0; padding: 8px 12px 8px 12px;  background-color: gray; border-radius: 10px; color:white; ">{prompt}</div></div>',
            unsafe_allow_html=True)
        messages.append({"role": "user", "content": prompt})
        st.session_state.chat_messages.append({"role": "user", "content": prompt})

        with st.chat_message("assistant", avatar=image_url):
            placeholder = st.empty()
            random_seed = random.randint(0, 2 ** 32 - 1)
            setup_seed(random_seed)

            st.session_state.chat_messages = system_prompt + st.session_state.chat_messages[
                                                             -(st.session_state.history_chat_num + 1):]
            new_prompt = tokenizer.apply_chat_template(
                st.session_state.chat_messages,
                tokenize=False,
                add_generation_prompt=True
            )[-(st.session_state.max_new_tokens - 1):]

            x = torch.tensor(tokenizer(new_prompt)['input_ids'], device=device).unsqueeze(0)
            with torch.no_grad():
                res_y = model.generate(x, tokenizer.eos_token_id, max_new_tokens=st.session_state.max_new_tokens,
                                       temperature=st.session_state.temperature,
                                       top_p=st.session_state.top_p, stream=True)
                try:
                    for y in res_y:
                        answer = tokenizer.decode(y[0].tolist(), skip_special_tokens=True)
                        if (answer and answer[-1] == '�') or not answer:
                            continue
                        placeholder.markdown(process_assistant_content(answer), unsafe_allow_html=True)
                except StopIteration:
                    print("No answer")

                assistant_answer = answer.replace(new_prompt, "")
                messages.append({"role": "assistant", "content": assistant_answer})
                st.session_state.chat_messages.append({"role": "assistant", "content": assistant_answer})

                with st.empty():
                    if st.button("×", key=f"delete_{len(messages) - 1}"):
                        st.session_state.messages = st.session_state.messages[:-2]
                        st.session_state.chat_messages = st.session_state.chat_messages[:-2]
                        st.rerun()


if __name__ == "__main__":
    from transformers import AutoModelForCausalLM, AutoTokenizer

    main()