File size: 7,358 Bytes
13531f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5cc19a
13531f3
 
 
 
 
b7c8482
 
 
13531f3
 
 
 
b7c8482
 
 
13531f3
 
 
 
b7c8482
 
 
13531f3
 
 
 
b7c8482
13531f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d36405
 
 
13531f3
9d36405
 
 
b5cc19a
9d36405
13531f3
 
 
 
 
 
 
 
 
 
5e071ac
13531f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import spaces
import torch


# see https://huggingface.co/spaces/zero-gpu-explorers/README/discussions/85
def my_arange(*args, **kwargs):
    return torch.arange(*args, **kwargs)


torch.arange = my_arange

from pathlib import Path

import gradio as gr
from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download
from PIL import Image
from refiners.fluxion.utils import manual_seed
from refiners.foundationals.latent_diffusion import Solver, solvers

from enhancer import ESRGANUpscaler, ESRGANUpscalerCheckpoints

TITLE = """
Image Enhancer
"""

CHECKPOINTS = ESRGANUpscalerCheckpoints(
    unet=Path(
        hf_hub_download(
            repo_id="refiners/juggernaut.reborn.sd1_5.unet",
            filename="model.safetensors",
            revision="347d14c3c782c4959cc4d1bb1e336d19f7dda4d2",
        )
    ),
    clip_text_encoder=Path(
        hf_hub_download(
            repo_id="refiners/juggernaut.reborn.sd1_5.text_encoder",
            filename="model.safetensors",
            revision="744ad6a5c0437ec02ad826df9f6ede102bb27481",
        )
    ),
    lda=Path(
        hf_hub_download(
            repo_id="refiners/juggernaut.reborn.sd1_5.autoencoder",
            filename="model.safetensors",
            revision="3c1aae3fc3e03e4a2b7e0fa42b62ebb64f1a4c19",
        )
    ),
    controlnet_tile=Path(
        hf_hub_download(
            repo_id="refiners/controlnet.sd1_5.tile",
            filename="model.safetensors",
            revision="48ced6ff8bfa873a8976fa467c3629a240643387",
        )
    ),
    esrgan=Path(
        hf_hub_download(
            repo_id="philz1337x/upscaler",
            filename="4x-UltraSharp.pth",
            revision="011deacac8270114eb7d2eeff4fe6fa9a837be70",
        )
    ),
    negative_embedding=Path(
        hf_hub_download(
            repo_id="philz1337x/embeddings",
            filename="JuggernautNegative-neg.pt",
            revision="203caa7e9cc2bc225031a4021f6ab1ded283454a",
        )
    ),
    negative_embedding_key="string_to_param.*",
    loras={
        "more_details": Path(
            hf_hub_download(
                repo_id="philz1337x/loras",
                filename="more_details.safetensors",
                revision="a3802c0280c0d00c2ab18d37454a8744c44e474e",
            )
        ),
        "sdxl_render": Path(
            hf_hub_download(
                repo_id="philz1337x/loras",
                filename="SDXLrender_v2.0.safetensors",
                revision="a3802c0280c0d00c2ab18d37454a8744c44e474e",
            )
        ),
    },
)

LORA_SCALES = {
    "more_details": 0.5,
    "sdxl_render": 1.0,
}

# initialize the enhancer, on the cpu
DEVICE_CPU = torch.device("cpu")
DTYPE = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
enhancer = ESRGANUpscaler(checkpoints=CHECKPOINTS, device=DEVICE_CPU, dtype=DTYPE)

# "move" the enhancer to the gpu, this is handled by Zero GPU
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
enhancer.to(device=DEVICE, dtype=DTYPE)


@spaces.GPU
def process(
    input_image: Image.Image,
    prompt: str = "masterpiece, best quality, highres",
    negative_prompt: str = "worst quality, low quality, normal quality",
    seed: int = 42,
    upscale_factor: int = 2,
    controlnet_scale: float = 0.6,
    controlnet_decay: float = 1.0,
    condition_scale: int = 6,
    tile_width: int = 112,
    tile_height: int = 144,
    denoise_strength: float = 0.35,
    num_inference_steps: int = 18,
    solver: str = "DDIM",
) -> tuple[Image.Image, Image.Image]:
    manual_seed(seed)

    solver_type: type[Solver] = getattr(solvers, solver)

    enhanced_image = enhancer.upscale(
        image=input_image,
        prompt=prompt,
        negative_prompt=negative_prompt,
        upscale_factor=upscale_factor,
        controlnet_scale=controlnet_scale,
        controlnet_scale_decay=controlnet_decay,
        condition_scale=condition_scale,
        tile_size=(tile_height, tile_width),
        denoise_strength=denoise_strength,
        num_inference_steps=num_inference_steps,
        loras_scale=LORA_SCALES,
        solver_type=solver_type,
    )
    
    output_path = "/tmp/enhanced_image.png"
    enhanced_image.save(output_path, format="PNG")

    # Load the saved PNG image to ensure it is returned in PNG format
    enhanced_image_png = Image.open(output_path)

    return output_path, enhanced_image_png
    #return enhanced_image


with gr.Blocks() as demo:
    gr.HTML(TITLE)

    with gr.Row():
        with gr.Column():
            input_image = gr.Image(type="pil", label="Input Image")
            run_button = gr.ClearButton(components=None, value="Enhance Image")
        with gr.Column():
            output_slider = gr.Image(type="filepath", label="Output Image Component")
            run_button.add(output_slider)

    with gr.Accordion("Advanced Options", open=False):
        prompt = gr.Textbox(
            label="Prompt",
            placeholder="masterpiece, best quality, highres",
        )
        negative_prompt = gr.Textbox(
            label="Negative Prompt",
            placeholder="worst quality, low quality, normal quality",
        )
        seed = gr.Slider(
            minimum=0,
            maximum=10_000,
            value=42,
            step=1,
            label="Seed",
        )
        upscale_factor = gr.Slider(
            minimum=1,
            maximum=4,
            value=2,
            step=0.2,
            label="Upscale Factor",
        )
        controlnet_scale = gr.Slider(
            minimum=0,
            maximum=1.5,
            value=0.6,
            step=0.1,
            label="ControlNet Scale",
        )
        controlnet_decay = gr.Slider(
            minimum=0.5,
            maximum=1,
            value=1.0,
            step=0.025,
            label="ControlNet Scale Decay",
        )
        condition_scale = gr.Slider(
            minimum=2,
            maximum=20,
            value=6,
            step=1,
            label="Condition Scale",
        )
        tile_width = gr.Slider(
            minimum=64,
            maximum=200,
            value=112,
            step=1,
            label="Latent Tile Width",
        )
        tile_height = gr.Slider(
            minimum=64,
            maximum=200,
            value=144,
            step=1,
            label="Latent Tile Height",
        )
        denoise_strength = gr.Slider(
            minimum=0,
            maximum=1,
            value=0.35,
            step=0.1,
            label="Denoise Strength",
        )
        num_inference_steps = gr.Slider(
            minimum=1,
            maximum=30,
            value=18,
            step=1,
            label="Number of Inference Steps",
        )
        solver = gr.Radio(
            choices=["DDIM", "DPMSolver"],
            value="DDIM",
            label="Solver",
        )

    run_button.click(
        fn=process,
        inputs=[
            input_image,
            prompt,
            negative_prompt,
            seed,
            upscale_factor,
            controlnet_scale,
            controlnet_decay,
            condition_scale,
            tile_width,
            tile_height,
            denoise_strength,
            num_inference_steps,
            solver,
        ],
        outputs=output_slider,
    )

demo.launch(share=False)